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ACE-GCN is a fast and resource/energy-efficient FPGA accelerator for graph convolutional embedding under

data-driven and in-place processing conditions. Our accelerator exploits the inherent power law distribution

and high sparsity commonly exhibited by real-world graphs datasets. Contrary to other hardware implemen-

tations of GCN, on which traditional optimization techniques are employed to bypass the problem of dataset

sparsity, our architecture is designed to take advantage of this very same situation. We propose and imple-

ment an innovative acceleration approach supported by our “implicit-processing-by-association” concept, in

conjunction with a dataset-customized convolutional operator. The computational relief and consequential

acceleration effect arise from the possibility of replacing rather complex convolutional operations for a

faster embedding result estimation. Based on a computationally inexpensive and super-expedited similarity

calculation, our accelerator is able to decide from the automatic embedding estimation or the unavoidable

direct convolution operation. Evaluations demonstrate that our approach presents excellent applicability and

competitive acceleration value. Depending on the dataset and efficiency level at the target, between 23× and

4, 930× PyG baseline, coming close to AWB-GCN by 46% to 81% on smaller datasets and noticeable surpassing

AWB-GCN for larger datasets and with controllable accuracy loss levels. We further demonstrate the unique

hardware optimization characteristics of our approach and discuss its multi-processing potentiality.
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1 INTRODUCTION

Graph Neural Networks (GNNs) designate all the research efforts to capitalize on the predicting
and classifying power of deep learning neural networks (DLNNs) for graph-structured data
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mining [19, 20]. Recently, the field has received much attention due to its demonstrated potentiali-
ties in diverse practical scenarios [9, 15, 36, 39]. However, due to the complexity of processing multi-
ple and independent relational information along with its propagative effect, traditional CPU/GPU-
software implementation still makes any in-place GNN deployment unpractical/unfeasible.

GCN is one of the most popular variances of GNN. The current state of the art on GCN algo-
rithmic research keeps reporting extremely long processing times and speed/scalability issues for
non-Euclidian datasets [42]. To make things worse, achieving convolutional neural network
(CNN) hardware acceleration still represents a challenge on its own [21, 33], and because of the
differences between Euclidean CNN and non-Euclidean GCN source data, traditional pruning and
quantization methods are hardly applicable. The result is a general lack of original hardware ac-
celeration proposals for GCN, the few of them focusing on coping with the issues arising from
blindly adapting rather inflexible architectures into graph structures, consequently inheriting im-
plementation challenges from both families.

However, the same differences that preempt GCN from directly recoursing traditional CNN
acceleration methods [18] could grant unexplored advantages on the GCN side. It is possible to
embrace and exploit the specific nature of real-world graphs into more adequate acceleration struc-
tures. Most real-world graph datasets exhibit strong power law distribution patterns with high
sparsity levels. The number of structural sub-graphs matching events becomes more frequent as
the graph grows. Then, the definitive similarity estimation is susceptible to deterministic variables
and design parameters according to targeted specifications and resource availability.

Embedding and aggregation are, by definition, the most important and iterative processes inside
GCN; their acceleration is a common concern and basepoint of many state-of-the-art architectures
out there [5, 8]. In this article, we propose ACE-GCN: a fast data-driven FPGA Accelerator for
graph Convolutional neural network Embedding based on graph structural similarity.

Our similarity core derives from a vector-based Jaccard graph similarity coefficient. With it,
ACE-GCN is able to recognize similar graph structures and automatically produce faster and in-
expensive embedding estimations. This ultimately promotes a reduction over the neural network
workload and accelerates inference completion, albeit with some controlled accuracy loss. This
article makes the following key contributions:

(1) Analyze the theoretical connection between the structural characteristics of real-world
graphs, their feature-based similarity coefficients, and their significance for graph convo-
lutional propagation

(2) Implement an innovative GCN embedding hardware accelerator based on detection and re-
coursing of sub-graph types by structural similarity estimation, with data-driven character-
istics and modifiable performance according to resource availability

(3) The quantitative and qualitative experimentation that demonstrate the virtues and possible
issues of our approach as a data-driven resource conservative accelerator, and the effect of
variance of storage capacity as a graph convolution operation reliever

The rest of this article is organized as follows: In Section 2, we develop the background, previous
work, and motivations of our study. In Section 3, we introduce the theoretical principles that rule
our design. In Section 4, ACE-GCN architecture and dataflow are described. Section 5 details the
experimental setup. Section 6 is the performance analysis. Finally, in Section 7, we present our
conclusions.

2 BACKGROUND AND MOTIVATION

Unlike contextual processing where data is required to be provided as a whole before operations
start, in data-driven processing, a constant, mutable, and uneven data provision may broadcast
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from a complex set of independent sensorial devices [4]. Its receiving component must evolve
as new data arrives. Thus, it cannot depend on a centralized or stochastically expected memory
allocation. This way, data-driven implementations are generally associated with some level of in-
place processing benefits [13].

Early works already acknowledged interception-based similarity coefficients as a way to mini-
mize communication and computing overload, for example, [2, 31]. The last one proposed a data-
driven approach for mining physiological data on which a similarity coefficient automatically al-
lows clustering among sets of rules. The adopted similarity function calculates an overlapping
ratio. The same is defined as Over (R1,R2) = |R1 ∩ R2 |/|R1 ∪ R2 |, where R1 and R2 are vectors
representing a collected set of rules.

Data-driven hardware implementation has a natural correspondence with FPGA. This device is
primarily a tool from the signal processing world. It contains simpler communication protocols
than GPU [26] and, as a consequence, faster signal response/lower latency. Unlike ASICs, FPGA is
highly customizable and modular, able to match with the most different computing environments.

The continuous research on the potentialities of DNN into the enhancement of fundamental
applications has derived into the emerging field of GNNs, including Weisfeiler-Lehman Graph
Kernels [29], Graph Attention Networks [32], and Graph Convolutional Neural Network or GCN
[16], among others. In essence, GNN proposes specific DL configurations to learn the implicit
behavior of complex graphs. This results in better interpretable results on inference tasks such as
node classification and node future link prediction [41].

Due to its demonstrated applicability and flexibility, the particular approach of GCN [16] has
deserved notoriety in the last years. Consider an undirected graph represented by the expression
G = (V ,E) with n total number of nodes, V set of vertices, and E set of edges. By declaring a set
of feature matrices like X = [X1,X2, . . . ,Xu ]T ∈ Rn×u with a u-dimensional feature vector, the
resulting neural propagation rule aggregates neighboring graph data with the equation X (l+1) =

σ (D ′−1/2A′D ′−1/2X (l )W (l ) ), where X (l ) is the feature matrix of the current convolutional layer,
W (l ) is the matrix of trainable weights,W (l+1) is the expected feature matrix output (and input to
the next convolutional layer), σ (.) is the activation function, and D ′−1/2A′D ′−1/2, or just A, is the
normalized adjacency matrix. The output is a new map of features n×u with reduced dimensional
representation.

One of the most iterating processes of GCN is graph embedding. This consists of encoding a
graph and its associated node features into a lower-dimensional representation. The process is
carried throughout several convolutional layers until the information is fit enough for automatic
classification [16]. The learnable graph convolutional network (LGCN) [6] included a novel
method denominated “k-largest node selection” (KLNS). This heuristic-model mixed technique
greatly simplifies graph learning by sorting out the largest features of a k-limited sub-graph repre-
sentation, promoting the transformation of generic graphs into a more processable grid-like type
of structure.

More specifically,A andX (l ) are morphed into a new X̃ (l ) ∈ R(k+1)×u×c feature space representa-

tion through the function X̃ l = д(k,A,X (l ) ) with k as abstraction hyperparameter,u size of feature
space, and c number of channels. The embedding locality information updates feature representa-

tion for the next layer s.t. X (l+1) ∈ Rk×u , in practice, reducing the spatial size from k + 1 to 1, and
then the lineal convolution is:

X (l+1) = X (l )W (l ) . (1)

It is widely known [17, 22, 24, 25, 27], that when real-world graphs tend to have larger sizes,
they acquire power law distribution and high levels of sparsity. Studies like [10, 38] have further
explored this fact, identifying similarity ratios among sub-graphs by exploiting vertex exchange-
ability characteristics. The properties of high sparsity in large graphs can be expressed from the
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relation that describes its vertex degree probability, i.e., P (k ) = Ck−α . Thus, for any scale-free net-
work, the probability of a random vertex connecting to k-number of neighbors is C proportional
to k−α for some fixed constant α .

Although graphs lack the explicit locality of pixel-based datasets, in highly sparse graphs each
node is inclined to connect to a limited number of nodes and not to all the nodes in the graph.
This situation becomes more evident as the graph becomes larger. In the vast majority of graph
processing acceleration papers [14, 23, 40], this effect has already been recognized as a challenge
on performance. The common solution to this involves exploiting customized architectures to
achieve complex transversal stochastic schedules. This type of approach barely manages to amend
the poor locality that greatly affects multi-processing balance.

The same concerns to obtaining architecture regularity on the irregularity provoked by the spar-
sity of data have been inherited by the already few proper GCN hardware accelerators out there;
worthy of mention are [12], HyGCN [37], and AWB-GCN [8]. These studies start by assuming
source data under precise stochastically expected locations. However, such ideal conditions on
controlled computing environments do not match more realistic data-driven setups like [34]. A
different data-driven perspective for graph inference acceleration becomes necessary.

Interestingly, GCN accelerators have so far not explored principles of graph similarity that could
otherwise provide useful discriminative information. Similarity, as an acceleration mechanism, is
regularly known to data-driven solutions [2]. Considering two sub-graphs Z (a) and Z (b), a mea-
sure of similarity between both can be calculated using a vector-based Jaccard similarity coeffi-
cient. This coefficient quantifies the ratio between interception and union of the set of features
corresponding to both sub-graphs, as described:

J (a,b) =
|Z (a) ∩ Z (b) |
|Z (a) ∪ Z (b) | . (2)

If both sub-graphs are described in terms of feature vectors like a = [a1,a2, . . . ,au ] and b =
[b1,b2, . . . ,bu ], the Jaccard similarity coefficient can be calculated by dividing the summation of
all minimum features min(ai ,bi ) between all maximum features max(ai ,bi ) through

J (a,b) =

∑
u

i=1min(ai ,bi )∑
u

i=1max (ai ,bi )
. (3)

In the literature, we find the graph similarity relation with CNN presented in three types: first,
CNN applied to assist in the calculation of graph similarity, totally replacing any stochastic method
[1]; second, stochastic methods like graph intersection and BFS assisting CNN in prediction tasks
[9, 30]; and finally, stochastic methods totally replacing CNN for prediction and classification tasks
[20, 28].

Like in the multi-media skeleton identification of [9], fast-streamed small-sized data applications
have a preference for the second option, while massive contextual processing generally opts for
the first. It is possible to leverage some of these concepts on similarity [20] in an effort to accelerate
GCN inference operations.

3 ACE-GCN DESIGN PRINCIPLES

Consider an isolated sector of a highly sparse graph composed of some nearing one-hop sub-graphs
as shown in Figure 1 (left). According to their degree and set of features, populating nodes may be
implicitly related by a convergence coefficient named “τ ” (as “type”). If their associated features
are considered equivalents, then the resulting embedding inherits the same equivalence. Moreover,
if they differ by a ratio, this value can be capitalized as an accuracy marker.

Positive convergence events can be considered as centroids, cataloged as “types,” and stored
for future utilization. The probability of matching such types should be highly representative on
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Fig. 1. Graphic representation of the principle of sub-graph similarity for implicit-processing-by-association
of datasets with power law distribution. (Left) A one-hop node association; each sub-graph-in-observance
or SIO is a candidate to form up a new centroid or “type”; types are represented here in different colors. In
our work, each SIO is composed of the reference node (RN) and at least k neighboring nodes (NNs). For less
than k neighboring nodes, the remaining positions are padded with pre-calculated, lower-bounded, average
dataset values. Depending on the similarity of their features, other SIOs can be related to one of the detected
types and its associated embedding results. (Right) The same approach can be applied to successive n-hop
upper-level embeddings.

real-world graphs. If a node connects to a number of neighbors with a determined set of features,
and then another unrelated node connects to the same amount with “similar” features to the first
case, then both nodes are considered to have a degree of similarity. In this case, any of the nodes
can become a type and its ratio of positive matching stored. The same principle could be extended
to successive hops besides one-hop as shown in Figure 1 (right).

A graph sequence is considered sparse if |En | = o( |Vn |2), where the number of edges is asymptot-
ically upper bounded byC |Vn |2 for all constantsC . For any sparse sub-graph, its similarity number
of events is proportional to the graph size and can be bounded by a similarity window. Let us as-
sume Sim(a,b) denotes a similarity absolute detector between a pair of sub-graphs Z (a) and Z (b),
induced by their respective Jaccard similarity coefficient s.t.

Sim(a,b) =
⎧⎪⎨
⎪
⎩

0 if J (a,b) ≤ P1

1 otherwise,
(4)

where P1 is a similarity threshold, in practice filtering J (a,b). The number of similarity events de-
tected for a sub-graph a, regarding a second sub-graph b, is proportional to the graph size through
a constant τ so that whenever b tends to ∞, the number of similarity events tends to ∞/τ , in
essence, a linear correlation. From this, it can be concluded that, having a specific sub-graph and
P1 threshold, the larger the graph, the larger the tendency for positive sub-graph similarity detec-
tion, formally described with the relation

∞∑

n=0

Sim(a,b) → ∞
τ
. (5)

Since similarity is here determined by an interval, sub-graph equivalence has an inherent accu-
racy loss named Q , and at this point, any similarity coefficient is going to be driven by the shape
of data, in this case, power law distribution of J (a,b). Thus, a similarity error can be associated by

Q → C ∗ 1

J (a,b)τ
, (6)
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Table 1. List of Acronyms Utilized in This Work and Their Meaning

Acronym Meaning Acronym Meaning
SIO Sub-graph-in-observance DSIOFV Detected SIO feature vectors
TIO Type-in-observance SIORNFV SIO reference node feature vector
RN Reference node CLR Classification results
NN Neighboring node GATH Gatherer
GTL Graph tracking list RL Reduction layer
TSIO Tiled sub-graph-in-observance CL Classification layer
CFV Classification feature vector BN Batch normalization
ID Node identification number TC Type creator

FC1W/FC2W Fully connected layer weights TM Type matcher
FGAM Full graph adjacency matrix HSE High-similarity estimator
FGFM Full graph feature matrix BT Bank of types
PVE Prevalence estimator BE Bank of embedding
PVL Prevalence estimator list KLNS k-largest node selector

on which the accuracy loss Q has a tendency to become negatively proportional to the similarity
coefficient J (a,b) at a fixed constant τ multiplied by a proportionality constant C .

The property of vertex exchangeability is defined as the invariance of the distribution of any
finite sub-matrix corresponding to any finite collection of vertices under finite permutation [3].
Consider a random sequence of sub-graphs Zn with random sequence of edges described by Vn =

{1, . . . ,n}; let π be any permutation of the integers n. Zn is infinitely vertex exchangeable if for

every n ∈ N and every π permutation of the vertices n, Zn is approximately Z̃n , where Z̃n has n
vertices and π edges.

Then, if both sub-graphs have a range of similarity, vertex feature characteristics are mutually
exchangeable. Lineal convolution operations produced by such set of features can be considered
equivalent and approximative.

If Z (a) has a level of equivalence to Z (b), then the convolution of their components A and X

are proportional to an error Q . With a common linear activation kernel as W (l )
a = W (l )

b
, convo-

lution equivalence can be represented by a relation like AaX
(l )
a ∗ Q = AbX

(l )
b

, with the definitive
propagation form limited by

X (l+1)
a ∗Q = X (l+1)

b
. (7)

Considering Equation (6), it is possible to find levels of structural similarity among sub-graphs
in enough quantities to justify the storing of matching samples in the form of centroids, especially
as the graph becomes larger. Such levels of similarities can also be seen as a dissimilarity range,
associated with an error coefficient that renders into a potential accuracy loss, and then its value
can be shaped through a set of parameters (Equation (7)).

From the exchangeability property of graphs, two sub-graphs can share the same convolution
embedding (Equation (8)), which is proportional to their mutual level of similarity. Because of
the sparsity, it is expected that the stored centroids become highly representative, meaning that a
substantially smaller number of types contribute to infer a much larger occurrence of embedding
operations.

The process of detecting and optimizing such centroids bears analogies with the feature learning
process from machine learning; we also refer to it as centroid learning. For the ease of the reader,
Table 1 contains the most reiterative acronyms utilized throughout this article.

Due to its particular ability of creating highly representative sub-graphs, we select LGCN as our
basis algorithm variance. Its simplified approach to the neural stages may allow us to properly iso-
late the neural processing resources from the heuristic-based elements. The possibility of a gradual
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Table 2. Memory Sectors Breakdown with Parametrized Shape and Size in Mb. Sram On-chip
(Light Blue), sdram Off-chip (Light Green), and Sdram Source Off-chip (Dark Green)

Sector Shape Cora CiteSeer PubMed NELL //...// Reddit
FGFM N*u0

FGAM N*N 31.9611 MB 99.9426 MB 127.4630 MB 3388.4455 MB
FC1W N*u1

BT (k+1)*u1*τ3

DSIOFV N*u1

BE u8*τ3

CLR N*u8 78.8706 MB 78.9334 MB 86.8522 MB 298.3281 MB
FDET 1A ((k/2)+1)*u1* u2

FDET 1B ((k/2)+1)*u2*u3

FDET 2A ((k/2)+1)*u4*u5

FDET 2B ((k/2)+1)*u5*u6

TSIO (k+1)*u1

DSIOFVΔ Nb *u0

SIORNFV 1*u0

GTL N*(Pb

3 +Pb

4 )
BTΔ (k+1)*u1*τ Δ

BEΔ u8*τ Δ

CFV Cb *u0*P2

FC1WΔ (k+1)*u0

FC2W u7*u8

PVL τ3 *(Nb + Pb

3 + Pb

4 ) 1.2463 MB 2.1256 MB 2.7618 MB 15.3518 MB

Four different ACE-GCN configura-tions are generated: Three customized for the smaller datasets Cora, CiteSeer, and

PubMed and a big one forthe rest, from NELL to Reddit. Each configuration is designed with different parameter values,

according toperformance goals.

relief of neural computing power implies that such unused capacity could be further exploited
by more traditional parallel configurations. This way, we take advantage of LGCN characteristics
to introduce new elements dedicated to our own proposed “implicit-processing-by-association”
approach.

4 ACE-GCN ARCHITECTURE

4.1 Main Components Description

ACE-GCN is a composition of a set of functionally independent modules. Every module is con-
trolled by levels of local finite state machines (FSMs), which in turn are centralized into a top
FSM. The top FSM serves as a module scheduler and as memory traffic manager for optimal data
synchronization within the IP. A breakdown of the memory sectors and their sizes is shown in
Table 2. A description of the most important modules within the architecture is as follows:

• GATH: The purpose of the gatherer or GATH is to collect, detect, and efficiently process
a continued random provision of graph information. GATH will launch a node inference
only when enough information related to that node has arrived at the system (an SIO has
been detected), this without halting the entire process and while GATH keeps receiving and
collecting other nodes’ information.
• KLNS: The k-largest node selector is based on the homonym model in Equation (1) pro-

posed by [6]. A representation of the coordination between the internal graph tracking
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Fig. 2. The objective of the SIO gathering and tiling process is partitioning a full raw graph into smaller sub-
graphs with properly representative feature vectors and within realistic memory broadcasting conditions.
The graph information is sent from the source full graph feature adjacency matrix (FGFM and FGAM) one
node at a time. The gatherer (GATH) receives the first node feature vector according to the streamed binary
adjacency vector composition. GATH is supported by a tracking list named GTL at SRAM. GTL constantly
updates the degree information for each node. It keeps a record of each arriving ID plus their 1-hop connected
IDs and degree achieved; such connection list is obtained following the adjacency vector that follows the
node feature vector. The node information is transferred back to the DSIOFV sector through its DSIOFVΔ

prefetching buffer. Whenever an SIO has collected enough information (at least j NNs have been received),
it triggers a primordial similarity estimation from HSE (before dimensional reduction takes place). Based
on this, it can automatically produce the feature vector estimation (without passing through any neural
layer) or start the longer path to graph embedding. For this, the detected SIO is processed by RL, and then
KLNS ranks the k-largest features from the set of neighbors. The operation is done directly over TSIO sector
resources. For the parameter k , we stick to the best performance report in [6] with k = 8 for all datasets of
similar sparsity degree.

list (GTL) and KLNS is further explained in Figure 2. This module produces the grid-shape
transformation of SIO that we refer to as “tiled” SIO, stored at TSIO memory sector, which
is indispensable for further processing.
• HSE: The high-similarity estimator (HSE) is the core module within the similarity estima-

tion circuit. It performs a fast comparison between a pair of tiled sub-graphs, i.e., between
the TSIO produced by KLNS and the currently parading type in observance (TIO). The
maximum number of types to be compared is denominated “τ ” and is a design parameter on
storage capacity granted to the accelerator.
The objective is to output a definitive signal that acknowledges whether the pair is similar or
not based on their constituent vectors. Internally, this comparison produces a vector-based
Jaccard similarity coefficient that is filtered by a threshold parameter P1 as in Equations (4)
and (5). Figure 3 further details the architecture of HSE and the centroids parading system,
from the arrival of the feature vectors to the similarity decision signal (1 or 0).
The types parading memory system that feeds HSE follows a time-division-multiplexed
scheduling. This allows us to perform continued partial reconfiguration of SRAM sectors
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Fig. 3. The core similarity estimation process within ACE-GCN. A time-division-multiplexed sequence sched-
uling (represented by a cyclical arrow symbol) ensures a constant streaming of τΔ types from BT to a prefetch-
ing buffer BTΔ. Each feature from the tiled SIO passes in synchronization with its counterpart TIO for a fast
minimum/maximum classification, then accumulates and iteratively visits the next four pairs until consid-
ering the whole feature vector. A Jaccard similarity coefficient is calculated between both accumulators
through a LUT divisor with results circumscribed from 0 to 1. Finally, a threshold P1 determines the absolute
similarity of the pair as in Equation (3). As a condition, sub-graph “a” will be highly similar to sub-graph “b”
when each and all of their nodes have a similar counterpart in “b”; whenever this condition is not met and
any of the nodes in sub-graph “a” cannot find its own individual similar node in “b,” the sub-graphs “a” and
“b” in question are considered non-similar. In this last case, FSM will skip all features regarding that TIO and
jump to the first feature regarding the first vector of the next type; the comparison may start over.

and maintain an equally sequential communication between on-chip and off-chip resources
without incurring major complexity or communication issues. The reconfiguration is trig-
gered by a set of pulses from an embedded frequency generator. A resulting depth of 65,535
entries is addressed by 16-bit input; the configuration is instated over a 12 LUT + 672 M20K
memory generic framework.
• RL, CL, and CNN: The two types of neural networks performed within ACE-GCN are fully

connected and 1D convolutional. These are driven by a common set of eight parallel MAC
units that operate in a fat-tree 47-bit fixed-point format. Their architecture and cycle descrip-
tion are further explained in Figure 4.
Inspired by flexible-point CNN frameworks like Ristretto [35], we have pre-calculated the
potential resulting values by software means and customized the range of the fixed point to
avoid larger accuracy loss. The definitive result is a 47-bit register with 1 MSB for the sign,
the next 4 MSB for the integer, and 42 LSB for the fractional part.
The specific neural operation is activated by the top FSM. In the case of reduction layer
(RL) and classification layer (CL), shallow fully connected layers are performed by access-
ing specific sets of weights (FC1WΔ, FC2W) and bias in memory.
The RL purpose is to create the primordial dimensional reduction over the high dimension-
ality of arriving SIOs. We have designed this layer able to handle the largest datasets in our
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Fig. 4. (Left) Overview of the three types of neural networks in ACE-GCN. (a) Fully connected convolution,
(b) 1D convolution with shifting (first intralayer), (c) 1D convolution without shifting (second intralayer).
Different feature detectors are shown in different colors (blue, red, green, and other gray nets), detector
window size per cycle (yellow encirclement), and input features processed (black segments). At the output,
other features are calculated if the feature detector window was full, i.e., considers the entire set of detectors
(gray segments). Windows are set at eight parallel MACs units. (Right) The data-customized MAC cycles:
integer and fractional components from features X (l ) and kernelsW (l ) are multiplied and accumulated in a
fat-tree top-down configuration, with bit space customized according to the pre-calculated expected range
per dataset.

experiments. CL is located at the very end of the process; it realizes the logit classification de-
cision from the definitive SIO embedding. The three modes of neural operations performed
by the MACs are graphically explained in Figure 4.
As a CNN, MACs are scheduled to process a 1D CNN using specific feature detectors at dif-
ferent sub-layers (DFET XA, FDET XB) and at different ACE-GCN layers (FDET 2X, FDET
2X). The CNN module produces the linear convolution of the tiled SIO stored at the TSIO

sector. Input X (l ) has a shape k × u, while the kernel-composed feature detector W (l ) has
shapeu × ((k/2)+1), from which (k/2)+1 is the size of kernels, obtaining the forward prop-

agation X (l+1) described in Equation (1) with shape u ′′ × 1. CNN results are then normalized
and concatenated through batch normalization (BN).
• PVE: The prevalence estimator (PVE) controls which types get stored at BT, limited by
τ according to each type counting of successful matching, which we call “events.” The PVE
organizes the types through the internal table GTL, as per their number of events during
the embedding process (P4 at most). The purpose is to estimate whether a type is worthy of
continued storing or, on the contrary, subject to deletion because of irrelevance. This is done
to address storing capacity according to memory space availability, as explained in Figure 5.
• TC & TM: The type creator (TC) and the type matcher (TM) are functional extensions

of PVE. Their purpose is to reflect the changes in GTL at the memory sectors dedicated to
BT, BE, and classification results sector (CLR) (the last one in the case of TM).
• BN: This module performs the basic batch normalization equations where complex divi-

sion and square root operations are pre-calculated and fast available at LUT as in [5]. The
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Fig. 5. The graph tracking list (GTL) dynamic. This process tracks and registers the centroids (types)
matching with the current sub-graph-in-observance (SIO) and organizes them in the list per number of
occurrences or “events.” This is done in order to discriminate unimportant centroids based on P3 storage
design parameters.

downside of this approach is the inherent potentiality for accuracy loss due to the utilization
of fixed-point format.

4.2 ACE-GCN General Datapath

ACE-GCN is performed in three main stages plus a loop and finalization stage. Stage A performs
the gathering and detection of SIOs from the source full graph. Also, it performs an early embed-
ding estimation by exploiting the extra descriptivity that the high dimensionality of raw SIOs may
provide. Stage B starts producing the primordial dimensional reduction and tiling abstraction of
a raw SIO as provided by the previous stage. Next, it activates the similarity circuit that sorts for
appropriate centroids and, if positive, executes in memory and updates such centroid prevalence
information.

Finally, stage C occurs whenever stage B fails to locate an appropriate type to produce the SIO
embedding estimation. Here, the centroids’ storage capacity is evaluated and optimized. Then,
if necessary, it activates the neural network to produce a direct convolutional embedding. The
purpose is to create new centroids and enrich the SIO comparison basis.

The general datapath overview is graphically presented in Figure 6. and further detailed as
follows:

Stage A: Sub-graph abstraction circuit

(1) The source full graph feature matrix (FGFM) and full graph adjacency matrix (FGAM)
are pre-stored within their homonym SDRAM sectors. Each of the N node feature vectors
are deployed followed by its respective adjacency vectors. Data is randomly arranged in
order to simulate the data-driven environment.
First, the gatherer (GATH) keeps track of the arriving nodes in context to their adjacency
vectors, by utilizing a GTL as in Figure 2. Received nodes are immediately transferred back to
SDRAM into the detected SIOs feature vector (DSIOFV) sector throughout its prefetching
buffer DSIOFVΔ. This gathering of graph information proceeds unhalted independently of
the rest of the steps until completing the reception of all nodes. Nonetheless, the general
process continues to step (2).

(2) Whenever a raw SIO is fully detected at GTL i.e., GATH has received the feature vectors of
at least j nodes within one-hop from an specific reference node (RN), the RN feature vector
is stored at the SIO reference node feature vector (SIORNFV) sector. Next, it is sent to the
HSE.
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Fig. 6. ACE-GCN core architecture overview. The general process is divided into three main stages. Stage
A (blue lines) describes the gathering and detection of SIOs. Stage B (black lines) produces most of the
comparison operations. Stage B (golden lines) is activated when realizing the unavoidable convolutional
operations. Modules (rounded cases) can intervene on different stages and together form up their main
circuits: graph abstraction, similarity estimation, and neural/convolution circuit. Supporting memory sectors
(squared cases) are described in light green for SDRAM massive data storage and light blue for on-chip
storage, lists, registers, and buffers. Dark green denotes the data-driven emulation environment allocated
in SDRAM, and it is not a functional part of ACE-GCN. The eight processing stages are signaled in the
figure and explained in Section 4.1. At the left border, a representation of the graph embedding algorithm
LGCN [6] motivating our architecture is shown; roughly, it includes a primordial dimensional reduction, two
overlapped embedding layers each with post-processing stages, and a final a classification layer.

HSE performs a feature-based similarity coefficient calculation between the SIORNFV and
each sample in the classification feature vector (CFV) sector at SRAM. If any of the sam-
ples matches the current RN (overpass P1), a positive HSE signal gets the SIO automatically
classified on the class pointed by the matching centroid in CFV.
In this context, the first functionality of the TM module updates the node ID (from the RN
ID) and the class vector on the CLR and continues to stage B, step (6); otherwise, the process
continues normally to stage B, step (3).

Stage B: Similarity estimation circuit

(3) Through GATH, identified SIO RN feature vector and the rest of neighboring node (NN)
feature vectors are extracted from the DSIOFV sector. Also, all the associated sets of weights
are extracted from the fully connected layer weights (FC1WΔ) sector. This information
is sent directly to the dimensional RL module. All the extraction is done following the NN
IDs listed for that detected SIO within GTL.
At each feature arrival, RL starts the reduction operation of the high-dimensional SIO feature
vector. For this, the RL processes the now “tiled” sub-graph-in-observance (TSIO) from
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its homonym sector; this produces a primordial dimensional reduction. Details on the RL
itself can be seen in Figure 4 (fully connected layer).
The resulting vectors are evaluated by the KLNS module that realizes a heuristic ranking of
the processed features to get a k-limited abstraction [6]. KLNS uses the TSIO sector itself
to realize its calculations, ultimately obtaining the wanted TSIO abstraction. Continues to
step (4).

(4) The HSE compares and calculates the feature-based similarity coefficient between the TSIO
content and each of the types stored at the bank of types prefetching buffer (BTΔ). When-
ever each type is being considered for comparison, we refer to it as a TIO.
After the evaluation, if a positive HSE signal has been generated, the process continues to
step (5); if not, the next TIO is iteratively visited. After parading all the TIOs contained at
BTΔ (limited by P2), if no available TIO ever matched TSIO (no positive HSE signal was
generated), then the process continues to stage C, step (6). Both paths are better illustrated
in Figure 5.

(5) Having encountered a type matching the TSIO, the PVE increases the similarity events
counting within the prevalence estimator list (PVL) with regard to the matching
TIO.
PVE searches for its reference node ID within the event list, and then the associated number
of events is updated. Next, GTL is reorganized from more to fewer events, and types located
at the very end of the list get identified “as lesser”; this category may include one or several
types (P3 at most).
In this context, the type creator (TC) module is not activated. The TM third functionality
gets the embedding vector result that is associated with the matching TIO from the bank
of embeddings prefetching buffer (BTΔ), passing through the BN module to the CLR sector,
without awaiting results from the actual CNN module. This operation is what we refer to as
convolutional embedding estimation. To avoid additional accuracy loss, we do not update
CFV when recurring to embedding estimation. Continues to step (8).

Stage C: Neural/Convolution circuit

(6) Since HSE could not find a similar type, PVE must introduce a new one to its GTL (if there
is no room, this introduction is ignored and only executes TM tertiary functionality). Every
time a request to create a new type is generated, GTL will increase a counter for the element
(or elements) identified “as lesser.”
P3 must be reached on this counter for the threatened type to be considered “irrelevant.” If
so, the list automatically releases that memory space by shifting all the above elements one
space up and transfers the node ID of the matching type (that originated the request) to
the last space of the list, assuming from now on the category “as lesser” with a single event
recorded.
The counter of the previously identified “as lesser” gets reset (unless they were pushed in
or out of this category, as newer events arrive). Then, the content of the TSIO sector is
passed feature by feature into BT (through BTΔ) by the TC module. Afterward, the tertiary
functionality of TM is activated; it transfers the resulting vector produced by the neural
module (CNN) to both BE and CLR (through BN). Continues to step (7).

(7) Since there is no previously calculated embedding for the current SIO, the CNN module must
produce one. CNN processes the content of the TSIO sector jointly with the feature detector
(FDET) sectors destined for each lDN N (1-D CNN intralayers ) and lACE (ACE layers) and
served consecutively.
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Table 3. Synthesis and Benchmarking Equipment Utilized for This Study

ACE-GCN AWB-GCN PyG LGCN
SoC Development Kit Intel programmable acceleration card D5005 Intel Xeon E5-2680 Intel Xeon Gold 6148

Intel Stratix 10 SX (2800) (2800) Stratix 10SX FPGA 2.5 GHz 2.4 GHz
330 MHz 330 MHz Nvidia RTX8000 Nvidia RTX 2080 TI

3,732,480 ALM 3,732,480 ALM 1,395 MHz 1,350 MHz
244 Mb SRAM 244 Mb SRAM

16 GB DDR SDRAM 32 GB DDR SDRAM

AWB-GCN and PyG hardware information is directly provided by the study in [7]. For experimental fairness when

deploying ACE-GCN and LGCN software execution, we have utilized available equipment that closely matches that

utilized by AWB-GCN.

Reutilizing the same TSIO sector as an intermediary layer and switching among the proper
FDET, CNN produces both lDN N of the current lACE , and then the results are processed by
the BN module.
As a condition, for an SIO to be allowed to process the next lACE , it is mandatory that all of
its k-largest neighboring nodes have been processed on the current lACE layer as well (CL
does not require this, as it is the last one).
If a specific SIO analysis has not completed every lDN N layer, its last BN embedded repre-
sentation remains at the CLR sector (by the tertiary functionality of TM, on behalf of the
current SIO reference node), waiting for the rest of its NNs to be equally processed.
For processing a new lDN N layer, the FDET sector is switched to the concerning one (1A,
1B, 2A, or 2B). If all lDN N layers concerning that SIO have been completed, CL processes the
definitive embedding result with FC2W into the targeted classification vector. Afterward,
the tertiary functionality of TM transfers the definitive resulting vector produced by CNN
(through BN) to both BE (Δ) and CLR sectors.
In parallel in this step, if the CFV sector has not completed a P3 quota of feature vectors
per class (defined by dataset), and the class detected has not been previously filled up, the
current SIO reference node ID (from the SIO reference node feature vector) is stored in the
account of its detected class, meeting conditions of step (2).
The reference node ID bits get stored followed by the bits indicating its classification. Con-
tinues to step (8).

Stage F: Loop and finalization

(8) The process goes back to step (2) until classifying every N nodes. END.

5 EXPERIMENTAL METHODOLOGY

ACE-GCN is designed at RTL with Verilog, synthesized with Quartus Prime, and paired as a cus-
tom logic with Qsys. Nios-II is used only as a facilitator for the Avalon communication protocol
with off-chip memory and general SoC-PC data traffic. Latency measurement is obtained by track-
ing the time of graph inference completion, minus the latency caused by the initial source graph
broadcasting (data-driven setup). As an accuracy metric, we use the area under the curve (AUC)
method and accuracy loss in % based on it. For acceleration measurements, we have calculated the
average from 10 readings each under equivalent conditions.

Details on the experimental devices and equipment are shown in Table 3 along with the device
specifications presented by AWB-GCN [7]. Parameters and datasets utilized in this work are de-
tailed in Table 4 and Table 5, respectively. ACE-GCN is designed for inference acceleration only
and neural kernels are pre-calculated offline with the Glorot initialization technique [11]. Also,
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Table 4. List of Parameters Utilized in Our Study and Their Meaning

Symbol Value Definition Symbol Value Definition
N (Dataset) Number of nodes in graph τ3 32,768 Number of types
Nb (Dataset) Binary shape of N τ2 16,384 "
k 8 k-limited node degree τ1 8,192 "
C (Dataset) Classes on graph τ0 4,096 "
Cb (Dataset) Binary shape of C τ−1 2,048 "
j (Dataset) Maximum node degree τ−2 1,024 "

u0 (Dataset) Feature dimensions τ−3 512 "
u1 32 " τ (Dataset) BT buffer: 128/256/512
u2 20 " P1 93% Minimal similarity
u3 8 " P2 8 Samples per class
u4 16 " P3 15 Maximum types “as lesser”
u5 12 " Pb

3 4 Binary shape of P3
u6 8 " P4 255 Maximum events per type
u7 24 " Pb

4 8 Binary shape of P4

Some parameter values are defined by specific datasets; the rest are fixed design values generated by software

pre-training and ablation analysis according to performance requirements.

Table 5. Real-World Graph Datasets Utilized in this Study

Dataset V E Degree Classes
Cora 2,708 13,264 5 7

CiteSeer 3,327 4.732 4 6
PubMed 19,717 108,365 6 3

NELL 65,755 318,135 5 210
Cont-201 80,595 199,199 4 4
Fome20 108,175 232,645 4 4

D6-6 120,576 146,875 2 5
Reddit 232,965 5,376,619 23 41

According to their sparsity and size: Highly sparse small-sized (Cora,

CiteSeer, PubMed), highly sparse medium-sized (NELL, Cont-201),

highly sparse large-sized (Fome20, D6-6), and moderately sparse

large-sized (Reddit) (Cont-201, Fome20, and D6-6 not included in

AWB-GCN; same for LGCN besides NELL). Only for the smaller group

we have separately generated smaller customized configurations of

ACE-GCN, while the rest of the larger datasets share a single

configuration generated with wider specs.

due to the cyclic nature of the phenomena in aim with known, stable, and predictable behavior,
we only consider transductive learning in our deployment and experimentation.

We have chosen AWB-GCN as the main comparative reference since it is one of the few proper
GCN accelerators published to date. It is also comparable to our study regarding its deployment
environment (actual FPGA physical synthesis), selected datasets, aimed inference applications, and
concerns on performance/power/resources results.

Having said that, our accelerator greatly differs in nature from AWB-GCN. ACE-GCN is not an
open framework hosting multiple GNN models, as in AWB-GCN. However, since its acceleration
principles are isolated from the neural component, it can be paired to a diverse range of neural
networks.
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We have implemented three acceleration approaches and included two reported acceleration
results from the literature:

(1) Full ACE-GCN: Full implementation of ACE-GCN on FPGA including similarity estimation
circuit plus the neural circuit containing the customized fat-tree fixed-point FC, CL, and
CNN cores. Seven τ levels and four dataset super-customized configurations of ACE-GCN
are generated.

(2) Standalone (S) mode, basic GCN embedding hardware implementation: GCN embedding
only executed with the customized fat-tree fixed-point FC, CL, and CNN cores on FPGA.
Absence of the similarity estimation circuit.

(3) LGCN baseline software execution: A pure software Python-based GCN embedding running
in a GPU solution. For this segment, we utilize a modified version of the publicly available
LGCN open source code [6].

(4) AWB-GCN: Hardware performance and specifications reported by the AWB-GCN study [7]
on its full configuration (with rebalancing technique) and 4K PE. To our knowledge (along
with its predecessor UWB-GCN [8]) it is the only actual FPGA accelerator, fully implemented
and tested on GCN inference, with similar technical target and dataset type to ours.

(5) PyG baseline software execution: The reported CPU-based Python Geometric performance
from AWB-GCN study.

We evaluate ACE-GCN under six different contexts as follow:

(1) Acceleration and accuracy loss under different storage levels τ (logarithmic scale): Speed-up
obtained by ACE-GCN under seven τ variances (τ−2, τ−1, τ0, τ2, τ1 and extreme variances τ−3

and τ3), its standalone mode implementation, and AWB-GCN (full) regarding PyG software
execution at all the datasets available.

(2) Neural circuit utilization under extreme τ variances: To further understand the effect of
extreme variances in storage capacity as a graph convolutional operation reliever and intro-
duce the potentiality for parallelism of ACE-GCN under extreme τ selections, we present the
progressive utilization levels of the neural circuit throughout the graph embedding process
for τ−3, τ0, τ3 at all the datasets available.

(3) General on-chip storage demand (logarithmic scale): SRAM memory demand for ACE-GCN
τ3 versus that reported for AWB-GCN baseline and its most conservative design implementa-
tion (D(B)), throughout the four basic configurations (NELL, Cont-201, Fome20, D6-6, Reddit
sharing the same configuration).

(4) General on-chip area demand: Reports the on-chip area demand of ACE-GCN τ3 versus AWB-
GCN baseline and (D(B)) implementation, throughout the four basic configurations.

(5) Power-gain and energy efficiency: Energy efficiency per dataset is presented by the % of
power grain (graph/kJ) of ACE-GCN0 over AWB-GCN and regarding PyG software execu-
tion. All datasets included except non-comparable: Cont-201, Fome20, and D6-6.

6 PERFORMANCE ANALYSIS

6.1 Acceleration and Accuracy Loss under Different Storage Levels

In Figure 7 (from left to right) it can be observed that for all cases, adding storage capacity to
ACE-GCN leads considerable speed-up. In comparison with any of its τ variances, the accelera-
tion provided by the standalone mode is minimal; this indicates the importance of the estimation
circuit over the general performance (except for the extreme lower τ−3, which actually produces
slowdown in most cases). The best result of full ACE-GCN at Cora is obtained for τ3 at around
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Fig. 7. Report on the acceleration factor of ACE-GCN in terms of x PyG baseline (Log scale) (at ordinate)
in standalone mode, seven different levels of τ , and AWB-GCN reported results in red bars (eight groups in
total) (at abscissa). Datasets Cont-201, Fome20, and D6-6 not included in AWB-GCN study.

486× PyG; however, this is less than half that reported by AWB-GCN for the same case (1, 063×
PyG).

Nonetheless, as the graph size increases, the gap between ACE-GCN and AWB-GCN ostensibly
decreases. For instance, for CiteSeer, ACE-GCN at τ3 is only around 0.81× AWB-GCN (183× PyG
under AWB-GCN). For PubMed, ACE-GCN at τ2 already manages to overpass AWB-GCN multi-
processing results by 2.18×, i.e., 551× PyG above AWB-GCN, while at τ3, ACE-GCN acceleration
is around 1.11× AWB-GCN for a still considerable margin of 165× PyG above AWB-GCN. The
explanation for these results might be related to the increasing availability of more representative
and richer matching events to the bank of types.

Indeed, PubMed dataset sparsity, along with its size and reduced number of classes, ensures a
higher probability of events; this effect is in concordance with the relation in Equation (5). Con-
versely, for similar node degree at smaller graphs, matching events are less likely to happen, rest-
ing more frequently on the neural circuit to obtain a proper convolution, thus having acceleration
substantially reduced. On the other hand, it can be seen that the NELL acceleration gap with AWB-
GCN is no longer so plenteous. Although NELL presents all the requirements to obtain greater
acceleration, its 240 classes affect our conservative hardware goals; nevertheless, acceleration re-
sults are still distinguishable.

To demonstrate the range capacity of our implementation without incurring additional hard-
ware requirements, we have reutilized the same specs generated for NELL on the rest of the rel-
atively larger datasets, equally capping storage capacity at different τ . In the case of Cont-201,
Fome20, and D6-6, datasets has been deliberately chosen to match our acceleration principle at
the best, i.e., super-sized, highly sparse graphs with power law distribution and reduced number
of classes.

In general, it can be observed that our approach reaches unimpeded acceleration, up to 2,000×
PyG at the best case (τ3) and around 500∼900× for more conservative specs (τ0). We also observe
a more evident logistic growth per τ increase but no vast differences among the three datasets
regardless of their exact size. In terms of acceleration, this indicates that for a fixed configuration,
the actual dataset size is not so determinant as it is a richer availability of centroids.

The largest dataset in our experiment Reddit has nearly twice the size of D6-6 and 8x its
number of classes and exhibits a level of sparsity degree 10x lesser. Still utilizing the same
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Fig. 8. Report on the accuracy loss of ACE-GCN (100 - absolute accuracy) (at ordinate) in standalone mode,
seven different levels of τ , and original LGCN algorithm in red bars (eight groups in total) (at abscissa).
Datasets Cont-201, Fome20, and D6-6 were not included in AWB-GCN study.

configuration common to NELL, our accelerator manages to provide acceleration to the task when
compared to software execution (around 4, 931× PyG for τ3). This is, however, 4, 492× PyG less than
AWB-GCN for the same scenario. Nonetheless, we also observe other characteristics. For instance,
the contribution of the estimation circuit to the performance is even greater this time, especially
for the smaller τ . This tendency seems to rapidly slow down, although reaching a plateau that
becomes more evident in the logarithmic representation of Figure 7. A direct explanation of this
situation might be related to the rather basic memory fetching system utilized by ACE-GCN and
likely unrelated to the acceleration principle itself.

The acceleration benefits of introducing convolution estimations do not come without charge.
In Figure 8, it can be observed that for the smaller datasets like Cora and CiteSeer, accuracy loss
seems to reach as high as 41%, while there is a slight improvement for larger datasets with PubMed
and NELL with maximums at around 38∼39%.

Being in essence an approximation technique, implicit-processing-by-association brings an in-
herent loss in accuracy. In comparison, the fixed-point-based standalone mode of ACE-GCN per-
forms better for Cora and CiteSeer, although it becomes unusable when increasing the graph size
at PubMed and NELL (with losses at around 42% and 46%, respectively).

Fortunately, processing CiteSeer and PubMed configurations at τ3, in general, preempted our
accelerator of reaching additional loss and even made it slightly improve accuracy over the LGCN
algorithm itself, with a loss of only 34.1% and 25.83%, respectively, and a small gain of 1.62 points
over LGCN in the case of PubMed. The explanation for this seems to be in relation to those studied
at Equations (6) and (7).

First, as its storage capacity becomes plenteous, our accelerator has access to a wider diversity of
potentially matching centroids, granting a more accurate comparison basis during the estimation
process. Second, as the dataset size increases and a high sparsity relation is maintained, the intrin-
sic representativeness of its elements also increases. This eventually produces higher statistical
confidence on each of the detected centroids or types.

We can observe the same effect in the larger group: Cont-201, Fome20, and D6-6. While the exact
graph size does not produce perceptible accuracy loss differences (which seems to be bounded to
around 33∼34%), within each, storing a larger quantity of types tends to improve task accuracy
for a considerable margin, with the best-case scenarios at τ3 from 17.48% to 22.17% approximately.
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Table 6. Experimental Results of ACE-GCN in Standalone Mode and Seven τ Variances,
Plus AWB-GCN and CPU-Based PyG Reported Results

Platform Standard Cora CiteSeer PubMed NELL Reddit
Intel Xeo E5-2680 (PyG) Latency (ms) [speedup] 2.51 [1x] 3.66 [1x] 13.97 [1x] 2.28E3 [1X] 2.94E5 [1x]

Energy efficiency (graph/kJ) 6.68E+03 3.88E+03 1.03E+03 6.99 5.43E-02
AWB-GCN Intel D5005 FPGA Latency (ms) [speedup] 2.32E-3 [1063x] 4.0e-3 [913x] 3E-2 [466x] 1.6 [1,425x] 31.81 [9242x]

Energy efficiency (graph/kJ) 3.08E+06 1.93E+06 2.48E+05 4.12E+03 2.09E+02
ACE-GCN (τ3) Stratix V GX Latency (ms) [speedup] 5.12E-3 [486.4x] 4.99E-3 [732.5x] 1.37E-2 [1,017.1x] 1.44 [1,582.5x] 5.96E+01 [4931.5x]

Energy efficiency (graph/kJ) 1.43E+07 1.15E+07 2.76E+06 6.36E+04 3.69E+05
Accuracy (AUC) 63.33 65.90 74.17 77.31 62.86

ACE-GCN (τ2) Stratix V GX Latency (ms) [speedup] 8.07E-3[310.8x] 9.65E-3[379x] 4.73[621.3x] 2.30[990.2x] 7.14E+01 [4116.28x]
Energy efficiency (graph/kJ) 1.26E+07 9.07E+06 2.41E+06 5.78E+04 2.19E+05

Accuracy (AUC) 62.18 63.91 71.86 75.52 67.92
ACE-GCN (τ1) Stratix V GX Latency (ms) [speedup] 9.96E-3 [250.8x] 1.25E-2 [291.1x] 2.44E-2 [572x] 2.92 [784.8x] 7.53E+01 [3902.42x]

Energy efficiency (graph/kJ) 1.00E+07 7.94E+06 1.93E+06 3.79E+04 1.30E+05
Accuracy (AUC) 61.92 64.92 69.59 75.12 64.36

ACE-GCN (τ0) Stratix V GX Latency (ms) [speedup] 1.41E-2 [177.3x] 2.02E-2 [180.8x] 4.55E2 [306.4x] 4.86 [469x] 8.58E+01 [3425.3x]
Energy efficiency (graph/kJ) 6.27E+06 6.06E+06 1.26E+06 1.59E+04 8.08E+04

Accuracy (AUC) 60.35 62.57 64.81 72.93 61.76
ACE-GCN (τ−1) Stratix V GX Latency (ms) [speedup] 1.91E-2 [130.8x] 2.36E-2 [154.5x] 5.98E-2 [233.3x] 12.03[187.9x] 1.06E+02 [2757.2x]

Energy efficiency (graph/kJ) 2.25E+06 1.55E+06 3.96E+05 9.20E+03 3.83E+04
Accuracy (AUC) 61.06 61.32 67.72 67.98 57.00

ACE-GCN (τ−2) Stratix V GX Latency (ms) [speedup] 3.38E-2 [74.1x] 4.89E2 [74.7x] 0.24 [58x] 1.08E2 [21.1x] 3.72E+02 [789.14x]
Energy efficiency (graph/kJ) 1.45E+06 6.19E+05 4.33E+04 1.84E+03 3.13E+03

Accuracy (AUC) 58.93 60.21 63.48 64.45 59.82
ACE-GCN (τ−3) Stratix V GX Latency (ms) [speedup] 0.11 [22.7x] 0.23 [15.9x] 1.28 [10.9x] 4.3E2 [5.3x] 5.00E+03 [58.79x]

Energy efficiency (graph/kJ) 7.11E+05 1.21E+05 1.84E+04 3.37E+02 3.91E+03
Accuracy (AUC) 59.91 58.32 60.94 61.77 53.56

ACE-GCN (S) Stratix V GX Latency (ms) [speedup] 8.3E-2 [29.9x] 0.17 [21.5x] 1.53 [9.1x] 3.43E+02 [6.63x] 2.90E+04 [10.11x]
Energy efficiency (graph/kJ) 8.23E+05 3.48E+05 2.12E+04 1.32E+02 1.30E+02

Accuracy (AUC) 68.28 61.68 57.75 54.08 51.19

Latency (ms), energy efficiency (graph/kJ), and AUC absolute accuracy (only for ACE-GCN).

When dealing with Reddit, accuracy loss had its maximal at around 46% for τ−3 and its minimum
at around 32% for τ2. A better detailed experimental report on this segment is presented in Table 6.

6.2 Neural Circuit Utilization under Extreme τ Variance

As previously seen, there is a relation between the amount of memory resources assigned to the
ACE-GCN similarity estimation circuitry and its performance in terms of acceleration and accu-
racy; i.e., as larger τ are introduced, there is less reliance in the neural circuit. We further analyze
this characteristic by observing the progress of the average number of requests to the neural circuit
throughout a full graph inference to completion time.

For this instance, we have studied the development of neural circuit utilization under three
extreme variations of τ : reference τ0, negative variation τ−3, and positive variation τ3. The objective
is to reflect the behavior of the accelerator whenever τ is located at extreme points.

Figure 9(a) presents the case for reference τ0; the progress of neural circuit requests tends to
decrease without too many spikes till reaching an almost zero utilization at around 35∼40% for a
medium-sized dataset and 70% for larger datasets (% to task completion). At zero point, the types
on storage have been greatly refined, and the circuit has been able to assume the following SIO
embeddings for the rest of the execution time.

In Figure 9(b), τ−3 is extremely low in regard to the reference. In this situation, the accelerator is
never totally able to disregard the neural modules. Cora and CiteSeer, being small-sized graphs, get
several touches over zero utilization, but they are rapidly forced to forget and restart embedding-
similarity operations, producing the observed spikes in the figure. The situation with PubMed and
NELL is similar but located even farther above zero, while for the more complex Reddit, utilization
bounces generally away from zero utilization.

The lack of enough memory resources produces a distortion on the similarity matching func-
tionality of our accelerator. Finally, with an extremely large τ3 at Figure 9(c), zero level is quickly
achieved for all datasets, hitting 15% and 20% for medium-sized graphs and 30% to 45% for larger
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Fig. 9. (a) Convolution circuit utilization for τ0 at all datasets available. The x-axis reports the progress
to 100% embedding task completion for the whole graph. The y-axis reports % of convolutional module
utilization regarding similarity circuit utilization from total number of operations. (b) Convolution circuit
utilization forτ−3 at all datasets available. (c) Convolution circuit utilization for τ3 at all datasets available.
(d) Power gain obtained by ACE-GCN over AWB-GCN (y-axis) regarding energy efficiency (in graph/kJ), for
the five comparable datasets, throughout seven τ levels (x-axis).

Fig. 10. (Left) On-chip storage demand and composition of ACE-GCN (normalized) and AWB-GCN (baseline
and design B). Repository and operational composition are differentiated by colors. Dark blue shows the
repository memory elements, while light blue shows the operational, control, and communication elements
at the four basic configurations. (Right) On-chip area demand and composition of ACE-GCN and AWB-GCN
(baseline and design B). Dark blue shows the elements directly involved in the convolutional operations, while
light blue shows the auxiliary, control, and communication elements at four basic configurations.

datasets. The general convolutional access is also quite smooth, and the spiking restarts seen in
τ−3 are replaced by (generally) flatter centroid learning curves.

6.3 General On-chip Storage Demand, Area Demand, and Energy Efficiency

With ACE-GCN, our purpose is to transfer computing power from on-chip to off-chip storage as
much as possible. However, to keep satisfactory acceleration markers, our approach still makes
use of a considerable amount of on-chip memory, as observed in Figure 10(a). We have customized
each configuration to fit its dataset as much as possible. It can be seen that for the smaller Cora
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and CiteSeer, our on-chip demand is larger than for AWB-GCN and its more conservative vari-
ance AWB(D(B)). This relation soon equates for larger PubMed and even underpasses the less
efficient AWB baseline, it remains larger to AWB(D(B)) in every case, with a shorter gap for
NELL/. . ./Reddit.

In regards to on-chip area demand, and as it is seen in Figure 10(b), ACE-GCN innovative
implicit-processing-by-association widely surpasses the more demanding multi-processing ap-
proach of AWB-GCN, in the case of ACE-GCN performing with 200K ALMs on average for all
datasets, except for NELL/. . ./Reddit, which is around 300K ALM.

In ACE-GCN, our auxiliary element is mostly represented by the similarity estimation circuit,
which is less computationally complex than our proper neural resources; besides, it remains fixed
for all ACE-GCN size configurations. Our convolutional module is rather a simplistic one, and
it is not optimized for parallel operation; however, the similarity circuit is technically indepen-
dent of the convolutional, and hence it is possible to adapt more optimized versions of it. This
could potentially turn into a reduction of ALM for convolutional operations and improved energy
efficiency.

Energy efficiency of ACE-GCN is presented in Figure 9(d) by its power gain over AWB-GCN’s
own reports (in all cases, based on power efficiency results and in reference to PyG CPU execu-
tion). The combination of quicker inference times, close on-chip storage demand, and even smaller
on-chip area produces an important surplus of power gain with respect to AWB-GCN. This char-
acteristic only increases with the addition of more storage capacity even for the larger and more
complex Reddit dataset.

7 CONCLUSIONS

Currently, the trend among the few GCN accelerators published to date tends to approach the nat-
ural sparsity of graphs as an issue that strongly challenges performance and resource scalability.
With ACE-GCN, we explored the utilization of this very same quality on our behalf by exploit-
ing first-order sub-graph similarity, feature exchangeability, and structure redundancy for graph
convolutional embedding.

The experimental part of this work demonstrates several important characteristics of our ap-
proach. First, we have successfully managed to transfer GCN embedding computing complexity
into storing capacity while keeping competent values of accuracy. For the maximum number of
centroids tested, τ3 = 32,384, we have obtained up to 4,900× PyG baseline (Reddit), and in some
cases surpassed AWB-GCN itself by 605× PyG (PubMed) and 157× PyG (NELL), i.e., 2.18× and
1.11× AWB-GCN, respectively.

Depending on the design goals and dataset size, we have obtained accuracy loss values ranging
from 40.09% to 22.65%. For the best accuracy result, ACE-GCN even managed to slightly overcome
the LGCN algorithm itself, while for the rest, we still consider them to be functional values within
the resource-constrained and real-time standards on target.

In other words, if enough memory capacity is granted, our accelerator is able to provide results
faster with competent inference accuracy levels. This is a big advantage for data-driven and general
in-place embedded systems, which are usually constrained by technology, resources, and power
limitations, and in which usually off-chip memory is plentiful regarding on-chip resources.

In this sense, our architecture has strong advantages over multi-processing approaches like
AWB-GCN/UWB-GCN and HyGCN. In the case of AWB-GCN, their traditional, explicit, and ultra-
parallel processing implementation requires from 600K to 800K on-chip logic elements. ACE-GCN
has a chip usage of only 200K to around 300K ALMs (from which a fixed 82K are functionally
independent of the neural modules) and only from 7× to 1.2× on-chip memory regarding the
AWB-GCN baseline.
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This gradual relief of direct neural resource occupation not only provides embedding acceler-
ation and energy efficiency (up to 1,500% of AWB-GCN for NELL dataset) but also can slowly
improve accuracy levels, despite a high utilization of hardware approximation techniques. More-
over, it opens the potentiality for further parallelism by releasing occupancy of the neural circuit
to additional parallel operations; this comes in handy for the reduced bandwidth requirements of
our system, which is limited to around 206 Gbps in the worst-case scenario.

Highly complex but rigid transversal implementations of traditional solutions unavoidably end
up producing exponential communication overhead or higher hardware requirements as a surro-
gate, disregarding a deeper understanding of graph structures themselves. In our case, we use a
more simplistic and straightforward approach to graph inference acceleration, fully adapted to
the studied characteristics of super-sparse graph, providing excellent speedup, flexible accuracy,
relatively low-frequency operation, and a vast energy and resource difference than baseline.

The results of our study indicate that our acceleration principles could be further expanded into
more traditional multi-processing architectures for enhanced graph inference, especially when
resource/speed trade-off is a major concern.
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