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Despite the extraordinary applicative potentiality that dynamic graph inference may entail, its practical-
physical implementation has been a topic seldom explored in literature. Although graph inference through
neural networks has received plenty of algorithmic innovation, its transfer to the physical world has
not found similar development. This is understandable since the most preeminent Euclidean acceleration
techniques from CNN have little implication in the non-Euclidean nature of relational graphs. Instead of
coping with the challenges arising from forcing naturally sparse structures into more inflexible stochastic
arrangements, in DRAGON, we embrace this characteristic in order to promote acceleration. Inspired by
high-performance computing approaches like Parallel Multi-moth Flame Optimization for Link Prediction
(PMFO-LP), we propose and implement a novel efficient architecture, capable of producing similar speed-up
and performance than baseline but at a fraction of its hardware requirements and power consumption.
We leverage the hidden parallelistic capacity of our previously developed static graph convolutional
processor ACE-GCN and expanded it with RNN structures, allowing the deployment of a multi-processing
network referenced around a common pool of proximity-based centroids. Experimental results demonstrate
outstanding acceleration. In comparison with the fastest CPU-based software implementation available in
the literature, DRAGON has achieved roughly 191× speed-up. Under the largest configuration and dataset,
DRAGON was also able to overtake a more power-hungry PMFO-LP by almost 1.59× in speed, and at around
89.59% in power efficiency. More importantly than raw acceleration, we demonstrate the unique functional
qualities of our approach as a flexible and fault-tolerant solution that makes it an interesting alternative for
an anthology of applicative scenarios.

CCS Concepts: • Computer systems organization → Real-time system architecture; Embedded hard-

ware; • Hardware→ Hardware accelerators; • Computing methodologies→ Neural networks;

Additional Key Words and Phrases: Convolutional neural networks, HW accelerator, embedded systems,
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1 INTRODUCTION

Graph neural networks (GNN) represent the most recent efforts within the AI community to
leverage the modeling and computing capabilities of graph representation. Just as in its Euclidean
counterpart at CNN, the spectral-based variance of GNN, i.e., graph convolutional networks

(GCN) introduces convolutional aggregators to produce accurate structural synthesis. This facili-
tates important graph analysis tasks such as link prediction and node classification.

Because many real-world phenomena have been found better described with dynamic graphs,
i.e., when the graph elements change in time, the temporal perspective of GNN and its vast appli-
cability has deserved considerable interest [44, 45, 50]. Better yet, a plethora of potential situations
would find special utility in handling ultra-fast dynamic graph inference. For instance, the auto-
mated financial field and high-frequency trading [5, 27, 35], robot piloting and lidar navigation
[1, 36], telecommunications network workload [10, 61], weather tracking and prediction [39, 47],
smart grids[21, 48], and many other public services autoregulation in future smart cities.

The aforementioned examples have in common a high dependency on a constant, reliable, and
massive data provision of relational information, which is, in turn, generated from some sort of real-
time sensorial network. In every case, operations must be registered, responded to, and broadcasted
at a very high ratio, generally at the levels of nanoseconds. A fitting hardware platform must be
in pair to these speeds, ubiquitous, and in-place processing requirements.

Although some of the static graph accelerators proposed to date [12, 32, 60] could be seemingly
adapted for the dynamic case, their direct regularity-exploiting approach would not allow realistic
implementations without incurring exorbitant resource requirements. It is necessary to explore
different alternatives for efficiently addressing real-time GCN implementation on hardware.

Based on prior structural proximity studies for minimizing communication and computing over-
load like [2, 24, 30], we have previously developed a hardware acceleration approach for static
graph embedding named ACE-GCN [23]. Due to its specific resource-efficient and data-driven
characteristics, ACE-GCN is considered an attractive option for a potential expansion into the
dynamic embedded context. Howbeit its good results, the unipolar processing foundation of ACE-
GCN lacks the concurrence virtues of regular multi-processing implementation. This situation
unavoidably leads to considerable centroid stabilization periods that may affect response capacity
to sudden dataset changes and prevent it from fully exploiting its accelerative potentialities.

In this article, we propose a Dynamic Recurrent Accelerator for Graph Online (DRAGON).

With DRAGON, we unify structural, and temporal graph embedding into a single framework and
provide resource-efficient acceleration for graph link prediction. Moreover, due to its intended low-
power real-time segment, our accelerator includes unique data-driven and fault-tolerant qualities.
The key acceleration premise behind DRAGON derives from the introduction of a befitting multi-
processing strategy that we have named “multi-polar centroid contribution” based on the well-
established moth-flame optimization paradigm [40].

Firstly, we transfer the concept of “implicit-processing-by-association” from the static graph
embedding case of ACE-GCN [23] and propose a new structural-temporal integrated processing
core aimed at the dynamic graph acceleration requirements. Then, following the multi-processing
oscillative approach of PMFO-LP [3], we enhance the former and deploy an enclosed network of
processing elements that mutually optimize processing paths toward prediction by following a
common proximity-based reference and auto-completion platform.

To the best of our knowledge, DRAGON is the first resource-conservative hardware accelera-
tor specifically designed for dynamic graph link prediction. Our experiments demonstrate that
DRAGON offers excellent acceleration to task completion on several real-world dynamic datasets
in comparison with the state-of-the-art multi-purpose CPU-based execution.
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Table 1. Principal Acronyms used in this Work

Acronym Meaning Acronym Meaning

SIO Sub-graph in observance SEU Structural embedding unit
TSIO Tiled sub-graph in observance TEU Temporal embedding unit
FV Feature vector IDC ID counter
ID Node identificator IDL ID counter list

KLNS k-largest node selector DNI Destination identifier
SER Structural encoded result DNL Destination identifier list
TER Temporal encoded result EVA Event assembler
NP Neural processor EVL Event assembler list
SP Similarity processor BSC Bank of structural centroids

GATH Gatherer BTC Bank of temporal centroids
HSE High-similarity estimator BSR Bank of structural results
TC Type creator BTR Bank of temporal results
TM Type matcher EMS Exclusive memory sector
PVE Prevalence estimator CCL Comparator cluster
SC Structural centroid TC Temporal centroid

We extensively explore the effects on performance and efficiency of varying key design param-
eters. In general, experimental results demonstrate that DRAGON has unimpeded acceleration
levels, conservative resource occupation, competitive accuracy, and responsive fault shielding.

This article makes the following key contributions:

— It introduces the mathematical deduction of temporal feature exchangeability for real-world
graphs within the dynamic link prediction context.

— It analyzes the enhancement opportunities of the mainstream hardware-based acceleration
approach to dynamic link prediction acceleration.

— It designs and implements a novel resource-constrained multi-processing accelerator for dy-
namic link prediction, based on fast structural/temporal estimations and resource schedul-
ing.

— It presents the quantitative and qualitative experimentation that demonstrate the virtues
and constraints of our approach as a data-driven embedded accelerator.

The rest of this article is organized as follows: In Section 2, we introduce the studies preceding us
on this topic and analyze the main challenges. In Section 3, we present the theoretical definitions.
In Section 4, we describe the acceleration and deployment strategy. In Section 5, we detail the
architecture and datapath of DRAGON. Section 6 describes the experimental setup and Section 7
analyses the results of those experiments. Finally, in Section 8, we conclude this article.

For the convenience of the reader, we present Table 1 with several of the most recurrent
acronyms utilized in this article.

2 BACKGROUND AND MOTIVATION

2.1 Steady Algorithmic Progress in GCN and Link Prediction

Link prediction on static graphs has been extensively developed through heuristic methods like
BFS and random walks [42, 44]. Other successful studies have proposed more stochastic and even
mixed heuristic-modeled approaches [23, 53, 54]. But the capability of learning from real-world
graphs and the general applicability of these perspectives have been demonstrated limited [49].

Link prediction through neural networks has received even greater attention in the last years
[9, 19, 26, 33, 59]. The mainstream practice introduces encoder-decoder configurations, where the
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encoder provides dimensional reduction and locality embedding while the decoder redeploys the
information to its original dimensionality. The result is the most probable configuration of its
future node connectivity [25, 57, 63].

The specific technique differs among authors. In [7, 14, 15, 41], the encoder-decoder is imple-
mented with dense layers at the sides while its temporal variation is processed by a chain of LSTMs
in the middle. At the encoding stage of [7], a pair of GCNs are separately applied to the gates of
LSTM for improved accuracy. In [31], GRUs instead of LSTMs are utilized, then, an interaction
proximity operator right before decoding improves general accuracy.

In [28, 34, 46] algorithms with distinguishable GCN-RNN closely integrated units contribute to
embedding chains of timesteps from individual sub-graphs decomposition as a way to expedite
the interpretation of dynamic graph information. In [4] these specific type of units are referred to
as TNA or temporal neighborhood aggregator. From the algorithmic perspective, dynamic graph
information research seems to be steadily and progressively advocating this type of integrated
static-temporal solution.

2.2 Previous Work on CNN, RNN, and Static GCN Accelerators

The majority of the recent progress in CNN and RNN hardware acceleration has been almost
exclusively focused on Euclidean-type datasets such as pixel and acoustic-based. Nevertheless, the
non-Euclidean nature of graph datasets fundamentally differs from the aforementioned.

The relational, non-cardinal and non-explicit allocation of nodes in a graph becomes complex
to optimize through traditional methods. The direct implementation of techniques as pruning,
quantization, and parallelization, reiteratively elaborated in the Euclidean domain [18, 38, 54, 56]
are less effective or simply inapplicable in the graph realm. This is ultimately evidenced in the
general lack of proper GCN hardware accelerators in comparison with CNN and RNN.

Among the few GCN accelerators for static prediction tasks proposed to date, four are distin-
guishable: EnGN [32], HyGCN [60], AWB-GCN [12], and our own contribution ACE-GCN [23].
In the first three studies, authors were fully concerned with coping with the issues provoked by
the attempt of mapping naturally ultra-sparse datasets into super dense and more controllable
processing structures. This rigid perspective is derived from ingenious but highly complex micro-
architectures with costly computing requirements, that like in the case of EnGN and HyGCN, force
to circumscribe system implementation to mere simulation environments.

Proper physical implementation was realized by UWB-GCN and its latest version AWB-GCN.
In it, a more straightforward approach was based on a cascaded crossbar network. This type of
structure assured better transversal access to the pre-arranged graph information, thus improv-
ing speed, PE management, and resource utilization. However, the solution still required a large
quantity of operators working concurrently, challenging the scalability necessary to implement a
potentially more complex CGN-RNN ubiquitous deployment.

In ACE-GCN [23], we have successfully demonstrated the mitigation effects that the gradual
circumvention of direct graph neural operators through faster proximity-based estimation may
bring over the total computing requirements. Although explicit multi-processing was not consid-
ered, the particular results of that study implied that even for a single-core system deployment, a
considerable amount of computing potential was being underexploited/underutilized during large
portions of execution time.

2.3 Seeking a Proper Approach for a Ubiquitous Link Prediction Deployment

Whereas static GCN acceleration is focused on non-time variant inference tasks such as structural
node identification, dynamic link prediction requires the inclusion of temporal information defined
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by entire sets of chained structural events. This already glances at concerns in the exponential
demand on computing and storing capacities for any intended physical deployment.

Although in principle any of the aforementioned static GCN accelerators could be adapted for
the dynamic case, only ACE-GCN provides a real resource-constrained alternative. With its supe-
riority core-to-core versus more rigid transversal baselines rigorously demonstrated, ACE-GCN’s
scalability still heavily depends on the speed of its sole similarity detector to accurately intercept
ideal structural centroids (SCs). A straight solution to the bottleneck would simply consider mul-
tiplying the number of similarity cores to simultaneously process separated zones of the dataset.
Nonetheless, this naÃŕve approach would also defy the data-driven and resource constriction in
aim.

A better multi-processing perspective to link prediction over dynamic graphs has been already
applied in PMFO-LP [3]. Based on the well established Multi-moth Flame Optimization (MFO)
computing paradigm [40], the high-performance computing solution PMFO-LP [4] is one of the few
practical attempts to accelerate link prediction via system implementation [3, 62]. In analogy to the
flight pattern of natural moths around light sources, in PMFO-LP, a network of semi-independent
computing elements named “moths” are able to describe regular oscillating trajectories toward the
inference solution named “flame”.

Just as in ACE-GCN, the accelerative principle of PMFO-LP heavily relies on the particular
power-law distribution that real-world graph datasets exhibit to properly balance workload. Never-
theless, its SGD-based super-computing type of deployment and specific performance goals made
any resource and energy optimization efforts beyond the scope of that study. In order to transfer
the same approach to a low-power and data-driven environment, a significant improvement of its
optimization methodology should be developed.

2.4 Data-driven Response and Fault-tolerance Qualities of Real-time Systems

An embedded system is said data-driven when its output closely reflects the changes perceived in
its input [2, 24]. This element adds the nuisance of a continuous, unexpected, and mutable input,
in front of which most inflexible model-based systems become unusable or highly unreliable [55].
Hence, the capacity of a system for a quick and accurate operational recovery in response to sudden
changes shall determine the quality of data-driven response [20, 24].

On the other hand, any automated system should exhibit a level of fault-tolerance quality against
potential component failure and the consequent risk of process interruption. Partial or faulty infor-
mation reception should not tether the capacity of a real-time system to complete its tasks. In this
sense, a compromise between functional accuracy, speed-up, and storage requirements is usually
reached by introducing a controlled delay tolerance. In this work, we refer to such parameter as
the upholding coefficient φ.

3 DEFINITIONS

3.1 Dynamic Graph Link Prediction by Stacks of Convolutional-recurrent Layers

Let G = (V ,E) to represent a static undirected graph composed of a set of N nodes like V =
{v1, . . . ,vN }, a set of edges E = {ei, j }, and adjacency matrix {Ai, j } > 0. Graph convolutional neural
networks or GCN, aims at synthesizing each node plus the aggregation effect of its associated
neighborhood into an embedding space s.t. Rd (d � n). This is obtained through the reductive
feedforward configuration:

GCN (l ) (X (l ),A) = σ (AX (l−1)W (l ) ), (1)

withA = D (A+ I ) after identity matrix transformation, activation function σ (.), a trainable weight
matrixW (l ) , the input feature matrix X (l ) , and GCN (l ) (.).
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Differently from static networks, dynamic networks introduce the uncertainty of time and evo-
lution [45] where graphs are subject to periodic addition/deletion of nodes and edges.

Let G (t ) = (V(t ),E (t ) ) to represent a dynamic network GD s.t. V D = ∪tV(t ) ∀t ∈ [0, . . . ,Ω],
discretized with a sequence of static timesteps s.t. {G (t ) = G (0), . . . ,G (Ω) }. When conditioned
on the past adjacency component sequence {A(t ) = A(0), . . . ,A(Ω) }, link prediction modeling
problem considers a P (.) probability of links to appear at a time G (Ω+1) through the relation

Â(t+1) = arдmaxP (A(t+1) |A(1), . . . ,A(t ) ).
A commonly seen method for capturing graph dynamics while preserving topology information,

has proved an efficient and straightforward approach [4, 7, 31, 41]. The same consists in stacking
GCN layers like the mentioned:

GCN (l ) (X (l ),A)(t ) = X (t ) . (2)

Then, followed by any sort of recurrent neural network (RNN), for instance, the composed
by gated recurrent units (GRU) [4, 8], the temporal evolution ofG (t ) can be learned from itsX (t )

component, with a definitive output like:

H (t ) = GRU (X (t ),H (t−1) ). (3)

3.2 Structural and Temporal Equivalence in Real-world Graph Datasets

Large real-world graphs tend to describe the power-law distribution and high sparsity. In this
context, vertex degree probability is defined by P (k ) = CK−α where the probability of a random
vertex connecting to a k−number of neighbors isC proportional to k−α for some fixed constant α .

Based on their set of features, a proximity coefficient such as Jaccard similarity may quantify the
interception ratio between a pair of static sub-graphsZ (a) andZ (b ) ⊆G, then an absolute proximity
event can be spotted with a parameterized threshold.

From the property of vertex exchangeability of random graphs, we may consider two static sub-

graphs sharing structural embedding equivalence if:X (l )
a � X (l )

b
� X (l )

E
, for l � 0, with an inference

error shaped like:

QS → C ∗ 1

J (a,b)α
, (4)

whereC is a fixed constant, J (a,b) is the Jaccard coefficient between Z (a) and Z (b ) , and α becomes
a design parameter.

In this context, if the structural embedding sequences of Z (a) and Z (b ) are mutually equivalents
throughout time i.e., ∀t ∈ [0, . . . ,Ω], it provides that:

{Xa (1), . . . ,Xa (t ) } � {Xb (1), . . . ,Xb (t ) }. (5)

The temporal embedding Ha (Ω+1) can be estimated from Hb (Ω+1) through a relation like:

Ha (Ω+1) = GRU (XE (Ω),Hb (Ω+1) ). (6)

Then, a temporal equivalence error QT is considered proportional to the structural equivalence
error QS throughout ∀t ∈ [0, . . . ,Ω] when diminished by a constant β s.t.,

Qt → Qs ∗
1

t β
. (7)

In general, this implies that the probability of Ha (t ) = Hb (t ) depends on the continuity in time
of their structural equivalence. Moreover, the deeper their equivalence in time, the smaller the
uncertainty of their exchangeability.
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Fig. 1. A graphic description of the “multi-polar centroid contribution” principle developed for proximity-
based multi-processing of dynamic link prediction. Based on the well-established multi-moth processing
paradigm, in DRAGON we leverage the inherent tendency of the processing path of different moths to grad-
ually transverse trajectories. The blue moth (a) represents a new incoming sub-graph partition or SIOs (b).
Its path calculation is represented by the green dots. The red moth (c) represents previously-stored path
information. These become centroids for the proximity check that is parallelly carried with path calculation.
A positive sequence of interceptions helps the platform to estimate the ultimate inference solution and cir-
cumvent the slower and more expensive path processing of the blue moth. At (d), a conceptualization of the
ring-shaped PE network for the multi-polar centroid contribution hardware implementation. A chained net-
work of PEs is decoupled from the role of moths as a method to provide leaner hardware distribution. Each
PE is composed of an NPs) and an SPs, for direct or estimated neural operation respectively. Path oscillation
is capitalized through a commonly accessed bank of centroids, NPs write to the bank while SP reads from
it in order to reference the path oscillation toward the solution. In the example, some (red-cased) SPs have
not found matching centroids. These centroids will have another chance at the contiguous SPs (recycled) till
finding a matching SIO (green-cased). Centroids are massively stored at SDRAM (e) with a generally sparse
arrangement and prefetched inside the process through an intermediary buffer named ω window.

4 METHODOLOGY

4.1 The Multi-polar Centroid Contribution Approach

In the PMFO-LP study, an important characteristic that is left unheeded is the strong tendency of
moths to progressively overlap their trajectories toward inference solutions. As shown in Figure 1,
this trajectory redundancy may be calculated with a lightweight proximity-based operator, regis-
tered, and controlled from a common parameter through some centralized scheduling platform.

The utilization of a proximity-based approach also allows the exploitation of the self-
descriptivity capacity that high-dimensional datasets may provide. This can be managed with the
introduction of concurrent proximity checks at several dimensional-reduction stages without halt-
ing the process. This characteristic is also overlooked at PMFO-LP, where graph information needs
to be arranged and passed through a single lengthy dimensional-reduction stage at pre-processing,
which ultimately affects its fault-tolerance and data-driven practicality.
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Based on a platform like the proposed, a partially transversal path reference can be gradually
calculated from each separated moth. This will have the effect of mutually reducing moths path
oscillation and ultimately, quickening arrival of the solution with high accuracy.

The consequent undirect influence between moths would not only lead to a faster reference
optimization, thus inference, but also open up the possibility for resource management other-
wise absent in PMFO-LP. In general, we refer to this MFO/proximity-based path-circumventing
methodology as the “multi-polar centroid contribution” approach and it represents the key
acceleration premise behind our design DRAGON.

Differently than in PMFO-LP. in DRAGON, we decouple the role of “moths” from the algorith-
mic perspective to the physical instantiation of PEs, this allows us to implement a more flexible
PE scheduling system. According to the level of trajectory overlapping, an associated moth com-
pletes its algorithmic paths by equating its future trajectory to any matching centroid. Meanwhile,
the actual physical PE associated with that operation is now made available for processing new
additional SIOs, improving parallelism and hardware efficiency.

Through this method, distinct physical PEs can simultaneously detect, contribute, update to,
and recourse from a common bank of centroids that becomes a single-parameterized reference
and auto-completion system for optimal moth oscillation. In our study, the term “multi-polar”
relates to the ability of the system to progressively influence/optimize algorithmic moths process-
ing routes by exploiting the polarized distribution of centroids through a network of concurrent
pseudo-independent PEs.

Distributed contribution to a shareable parameter pool like the proposed may help also to im-
prove inference accuracy due to a more favorable stochastic representation. Moreover, from a
micro-architecture perspective, recoursing from a proximity-based approach allows transferring
the natural storage complexity of a multi-dimensional source graph to a much simpler indexable
arrangement. Thus, the information can be registered in memory with a generally sparse distri-
bution, more easily accessed and processed through direct cascaded partitioning architecture like
the one deployed by AWB-GCN [12].

In analogy to machine learning related terms, we call “training” the period that precedes the sta-
bilization point of centroids optimization, while the period that immediately follows is referred to
as “trained”. Once the bank of centroids reaches an optimal trained point, the centroid optimization
mechanism can be disabled and may directly serve future evaluations.

All in all, besides the multi-processing generation parameter ρ the scalability and performance
of our accelerator will depend on four additional design parameters:

(1) The length of the sliding window “ω”, (2) The capacity for SC/TC at the BTR/BTC defined
by “α” (with “β = ω ∗ α”), (3) The capacity for proximity events per SC at EVL “ϵ”, and (4) The
fault-tolerance upholding coefficient “φ”.

4.2 Physical Deployment Strategy

We interpret the multi-polar centroid contribution to both structural and temporal phases of graph
embedding involved in the link prediction algorithm. This is materialized in the unified meta-
heuristic ring-shaped network at the heart of DRAGON, which is capable of jointly hosting convo-
lutional and recurrent neural functions along with their associated circumventing proximity-based
operators. Proximity calculations are provided by a modified version of the similarity-detector in-
cluded within ACE-GCN [23].

For the structural embedding phase acceleration, the reference and auto-completion platform
gravitates around feature-based SCs. The choice allows us to take advantage of the high dimen-
sionality of source datasets by introducing earlier structural proximity checks and circumvention
right before pre-processing.
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For the temporal embedding phase, proximity check is done over the structural historical record
of SIOs instead of their feature vectors. In this aspect, temporal centroids (TCs) are described by
chains of structural embedding results (SER) and encoded under the consequential temporal

embedding results (TER).
The “Implicit-processing-by-association” workload circumventing approach developed at ACE-

GCN, is further adapted for the dynamic link prediction case as follows:
Based on relations (10) and (11), it is possible to estimate a temporal embedding Ha (t ) an SIO

Za from a pre-stored Hb (t ) of an SIO Zb if and only if their mutual structural equivalence is deep
enough in time while considering QT as an accuracy loss susceptible to storage parameter β .

To evaluate structural equivalence continuity, chains of structural encoded results like (10) are
directly stored. A single chain will have a maximum depth of Ω timesteps with a striding window
of ω timesteps (ω ⊆ Ω), where each ω striding over Ω is linked to a specific temporal encoded
result represented in H (t ) .

Concluding from (12), wider ω may have the effect of improved accuracy due to information
uncertainty reduction. From the predictionHa (Ω + 1) a regular classification layer is implemented
to identify the SIO structural type at the predicted stage.

Having the potential structure reduced to a certain centroid significantly eases links deduction
which in turn can be obtained with a simpler heuristic method. For this effect, we employ a histori-
cal ranking approach with nodes IDs registered by their matching ratio to the particular predicted
SC throughout Ω timesteps.

5 SYSTEM ARCHITECTURE OF DRAGON

5.1 Components Overview

The architecture of DRAGON is composed of sets of functionally semi-independent modules that
have been linked together to form super-modules. Their functions are controlled by local FSMs
(finite state machines) which are in turn driven by successive layers of FSMs.

Ultimately, the entire custom logic is driven by a top FSM that also serves as an interpreter-
scheduler with the rest of the external SoC components through the native communication
protocol.

The memory format of DRAGON follows similar nomenclature to that in ACE-GCN. Nodes
feature vectors are represented under sets of 64-bits flexible fixed-point [17, 58], divided into 16
bits for node identification (ID) and 47-bits of feature operational information. From the last
group, 1 MSB represents the sign, next 4 MSB the integer and, 42 LSB of fractional information.

Originally stored at off-chip SDRAM, SIOs are buffered and scheduled by a data-driven gathering
unit to the PE network according to availability. Stored centroid access from SDRAM occurs more
directly using a time-division-multiplexed pre-fetched mechanism as the included used in ACE-
GCN. Due to the considerable centroids recycling capacity allowed by the high representativity of
dataset, SIOs off-chip access is designed with priority over centroid access.

We categorize the entire architecture into four main circuits: Pre-processing, neural, proximity,
and heuristic circuits. Details can be seen in Figure 2 and further explained as follows:

Pre-processing circuit: This circuit is the first to come into contact with the source dataset
and it is fundamental to the real-time and data-driven functionalities of the accelerator. Its gen-
eral purpose is to receive and prepare the dataset prior to the actual embedding process. Mostly
represented by the gatherer (GATH) and its sub-module the k-largest-node selector (KLNS).

— Gatherer (GATH): The purpose of this module is to constantly track the arrival of graph
information and whenever requirements have been met, assemble SIOs and prompt their
processing down to the PE network. Based on the original implementation of our novel
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Fig. 2. A representation of the core micro-architecture of DRAGON (after KLNS abstraction—before heuristic
stage). (a) EMS1 with sizeω×ρ allocates the tiled SIO to be compared through the proximity circuit (b) against
a counterpart SC/TC (c) stored in a general sparse arrangement within BSC/BTC to ensure stochastic cross-
representation. For this, a bufferedω window of sizeω×ρ unidirectionally strides over BSC/BTC with a total
length of ω ∗ α . The first level comparison is done by a set of ρ comparators clusters or CCLs cores, each
composed of ω parallel comparison cores that provide specific results to a single high-similarity-estimator
or HSE at two types of the operational modes: structural (S) or temporal (T). HSE is then able to identify or
predict the status of a particular SIO by invoking the encoded result from BSR/BTR (of size ρ×α for (S) or ρ×β
for (T) (with β = ω ∗ α ) without incurring in the neural circuit. Centroids are generated by the neural circuit
(d). It follows a one-hop distribution smoothing like in AWB-GCN [12]. Structural embedding units (SEUs),
temporal embedding units (TEUs), and multiply-accumulate units (MAUs) are unidirectionally cascaded
through three levels of task schedulers named TQs. These elements define the NPs and in conjunction with
the CCLs of the proximity circuit (included within SPs) form the ring-shaped PE network of DRAGON.

work ACE-GCN [23], it has been modified to track and launch the processing of multiple
SIOs simultaneously. The input information of this module is G (t ) for a particular timestep
t , defined by its graph adjacency matrix and graph feature matrix. Datasets are purposely
arranged in a non-stochastic manner as to originate a data-driven fault-prone environment.

— k-largest node selector (KNLS): This sub-module is functionally integrated under GATH
and provides the necessary pre-processing to the raw dataset before it can be effectively
scheduled to any PE available. Internally, it produces a sub-graph abstraction and partition
following the novel reductive heuristic model from [11] where “k” is a design parameter
influenced by the graph total degree. The output is the resulting Z (t ) also named tiled SIO
in ACE-GCN. It has a shape: (k + 1) ∗ u1, where u1 is the first layer feature dimension prior
to the neural dimensional reduction.

Neural circuit: Due to its inherent complexity, most of the computational load within DRAGON
is executed by the neural circuit. It provides all the necessary neural operations for the proper
structural and temporal graph embedding process, including fully connected, convolutional and
recurrent.
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Internally, the circuit is arranged in a ring-shaped network of neural processors (NPs) (jointly
with the SPs from the proximity circuit) with each neural NP composed of three types of units:
SEUs, TEUs, and MAUs.

Each type is generated proportionally to a multi-processing instantiation parameter named ρ
accordingly ρ

S EU
= ρ, ρ

T EU
= ρ/4, and ρ

MAU
= ρ/8. These relations have been obtained through

comprehensive timing and ablation analysis.
Units are concatenated following a cascaded one-hop smoothing configuration like in the novel

work AWB-GCN [12] for static GCN. The method seeks to produce a deadlock-free transit and an
optimal resource distribution throughout MAC resources. We have extended this idea and decou-
pled the role of CNNs (SEUs) units from MACs (MAUs) to include GRUs (TEUs) within the resource
distribution. Unlike in AWB-GCN, in our design, this process is controlled from three levels of task
queues or TQs instead of one. Each processing family is briefly introduced as follows:

— Structural embedding units (SEUs): These units produce the necessary SIO structural
embedding in a specific timestep as defined in Equation (2), i.e., the information synthesis of
a particular SIO and its one-hop neighborhood. The internal architecture of SEUs is based
on the core processor of our novel work at ACE-GCN [23]. We have expanded its multi-
processing capabilities through the multi-polar centroid contribution approach as explained
in the methodology chapter of this work. For this instance, each SEU can independently and
simultaneously contribute to and read from a shared parameter platform centered around
the concept of proximity centroids. The exception would be the exclusive memory sectors
EMS1 and EMS2 that are unavoidably assigned for the operative requirements of each SEU
and cannot be shared.

— Temporal embedding units (TEUs): The purpose of TEUs is to calculate the temporal em-
bedding from the structural embedding obtained by each of its SEU counterparts as defined
in Equation (3). Internally, it performs the basic GRU operations [8]. Its design follows an
RNN circuit explicitly cascaded in three layers. Its non-linear operations are obtained from
pre-trained LUTs and stored weight vectors. Similar to its SEUs counterpart, each GRU re-
quest is serviced with TEUs, and these in turn with MAUs according to a centralized task
queuing system of three levels.

— Multiply-accumulate units (MAUs): Neural operations inside SEUs and TEUs are pro-
vided by the multiply-accumulate resources from the MAU network according to availabil-
ity and priority. They are pre-configured following a flexible fixed-point format [17] with
ranges provided by pre-analysis [52]. Since recurrent operations are less frequent than con-
volutional, with this method, idles TEUs cycles are better distributed to contiguous SEUs,
guaranteeing a leaner resource utilization and operational flexibility.

— Temporal classification layer (TCL): TCL is a fully connected neural network reductive
to α classes that produce the definitive SC prediction regarding t = Ω+1 from the definitive
TER H (Ω) at t = Ω. Since it’s a non-frequent operation, it is serviced by the MAUs network
through TQs just as SEUs and TEUS but with top priority.

Proximity circuit: This circuit performs the key acceleration strategy behind DRAGON. It pro-
vides a faster circumvention mechanism that alleviates the computational load from the more de-
manding neural circuit. Its most relevant module is the high-similarity estimator (HSE) assisted
by its sub-modules: prevalence estimator (PVE), centroid matcher (CTM), centroid creator

(CTC), and comparator clusters (CCLs). The conjunction between CCLs and HSE constitutes
the similarity processors (SPs) and is arranged as a ring-shaped network.

— High-similarity estimator (HSE): HSE works under two modes regarding the type of em-
bedding stage that is seeking to circumvent: structural (S) and temporal (T). It operates over
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two large SDRAM sector denominated bank of structural centroids (BSC) and bank of

temporal centroids (BTC) for each mode respectively. BSC and BTR share the same design
parameters, with capacity for α centroids with each described by ω vectors multiplied by ρ
processors. An encoded centroid is the symbolic representation of a particular embedding
result that eases its memory indexation. BSC and BTR associated encoded results (SER and
TER) are stored at two memory sectors denominated bank of structural results (BSR) and
bank of temporal results (BTR), with sizes of α for (S) and β = ω ∗ α for (T) times ρ. The
exact meaning of ω depends on the mode. In (S), each ω allocation represents a feature vec-
tor FV, together they describe a particular SC with its structural embedding result encoded
at BSR as a SER. In (T), each ω represents a proper SER, several SERs form a TC, which is
encoded at BTR as a TER. The BSC/BTC-EMS comparison algorithm is carried out through a
buffer named “ω window”. Just as its EMS counterpart, ω window has a size of ω × ρ that al-
lows the expedited comparison of up to ρ centroids in parallel. In (S) mode, window striding
is done centroid to centroid, i.e., every ω FVs. In (T) mode, striding is done SER to SER i.e.,
column to column. In both cases, strides are indexed to a respective SER/TER at BSR/BTR.
Details of this function are further explained in Figure 2.

— Comparator clusters (CCLs): In analogy to the split between SEUs and TEUs from its
multiply-accumulate operators MAUs, a single HSE module is scheduled among multiple
CCLs according to availability. Each CCLs is allocated aside their neural counterparts within
an SP at the ring-shaped processing network for a total of ρ CCLs generated. Internally, each
CCL is composed of ω comparators that provide parallel partial processing to ω elements of
the BSC/BTC-EMS algorithm with specific output to HSE.

— Prevalence estimator (PVE), centroid matcher (CTM), and centroid creator (CTC):

The purpose of these is to serve as a breach between HSE and BSC/BTC memory controller
during the centroid comparison process. PVE controls the number of centroids in bank by
estimating their historic prevalence, deciding their deletion or inclusion accordingly. CTM
registers any successful similarity event taking place while CTC creates new centroids if no
similarity event has been generated.

Heuristic circuit: The heuristic circuit includes all the modules involving the final meta-
heuristic algorithm to the definitive link prediction. It is composed of three modules EVA, IDC,
and DNI. A brief introduction of each is presented as follows:

— Event ID assembler (EVA): The purpose of EVA is to register the ID composition of any
SIO successfully matching a particular SC, i.e., whenever a structural similarity event has
been detected. The operation utilizes an event list named EVL with capacity for α SCs, ϵ
events per SC, and k IDs per event. Due to the high consistency in dataset distribution, a
single full EVA collection from a single timestep G (t ) is reusable for all incoming timesteps.

— SIO ID counter (IDC): The purpose of IDC is to keep a register of all the neighboring IDs
ever involved with a specific SIO after its KLNS abstraction. In this regard, each ID is ranked
according to the number of detections within an SIO during the entire Ω scope analyzed.
These operations utilize a set of small, dedicated registers named IDLs with a total of N
IDLs, i.e., one for each potential SIO.

— Destination nodes identifier (DNI): At the end of the process and after having reduced
the uncertainty to a known SC, DNI completes the SIO link prediction by inferring its most
probable ID composition at the future timestep t = ω + 1. For this operation, it realizes a
heuristic search at EVL of the event in the predicted SC with the highest ID popularity ratio
according to IDL. Details on this process are further explained in Figure 3.
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Fig. 3. A representation of the heuristic circuit and its ranking-based link prediction method. (a) DNI module
starts by reading IDL belonging to the predicted SC (t = Ω + 1) in a top-down fashion, from the ID with
more occurrences to those with fewer or none. (b) DNI makes a fast comparison of the ranked IDs in IDL
with the IDs within each of ϵ proximity events within the EVL sector dedicated to the predicted SC. (c) Each
positive interception increases a counter for the respective event that is ranked within DNL. (d) Whenever
any of the events have reached at least k , such event is the most probable definitive structure of Z (Ω+1) . For
processing the next SIO, EVL remains untouched while IDC and DNL are reset and declared available.

The distinct circuits and their components communicate with each other by following a specific
datapath as shown in Figure 4. Details of the datapath are further described:

5.2 Datapath Description

(1) The process starts with the arrival of the first temporal timestep G (t ) at time t = 0, i.e., G (0)

from the full set G to GATH. As data arrives fragmented and unorganized, GATH continu-
ously tracksG (t ) for enough information to declare a subgraph-in-observance or SIO. This is
obtained through the sub-module KLNS which produces the sub-graph partition/abstraction
denominated Z (t ) or tiled SIO. Meanwhile, during the partition operation, KLNS transmits
the selected IDs to the IDC. This module keeps all the IDs ever involved with a particu-
lar SIO, ranked by the number of appearances throughout the full length of time analyzed
(t = 0, . . . ,Ω). The detected Z (t ) is distributed to one of the ρ available CCL at the ring-
shaped PE network. Step (1) continues in parallel to the rest of the process until detecting
and launching each potential SIO (N ) within G (t ) .

(2) At the proximity circuit, with HSE in (S) mode,Z (t ) at EMS1 is evaluated against BSC through
the ω buffer window, at strides of ω (for a maximum of α strides), if a high-similarity event
(structural) is NOT detected process continues to (3.a), otherwise, it continues to (3.b).

(3) (a) Z (t ) is scheduled to any of the ρ available SEUs at the neural circuit, this produces its
structural embedding X (t ) . PVE sub-module analyzes storage availability and directs CTC
to create a new SC within BSC. This transfers X (t ) jointly with its encoded SER to BSR and
writes the FV composition of Z (t ) into BSC from the next α position available. The process
continues to (4). (b) HSE reports the matching SC to EVA at the heuristic circuit, then EVA
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Fig. 4. A representation of the datapath running in DRAGON. Numbered circles indicate the different steps
of the process. Raw unorganized graph source is transferred to the pre-processing circuit (grey box) that
produces SIO partitions Z (0, ...,Ω) . In (S) mode, the proximity circuit (green box) searches for a proper SC in
BCR that allows a SER fast estimation so as to avoid slower SEUs (small purple boxes) intervention, likewise
for all future timesteps of Z (fading purple boxes). Proximity circuit in (T) mode checks for a concatenation
of at least ω timesteps of Z (0, ...,Ω) matching a TC in BTR. If found, the related TER replaces the next TEU
operation. If it has reached the last timestep, the process takes the definitive TER to TCL. This produces the
predicted SC for Z (Ω+1) . The actual ID configuration of Z (Ω+1) is calculated through the heuristic circuit
(yellow box). Through a search-and-rank dynamic, it launches the most probable ID neighboring the refer-
ence ID at the center of Z (Ω+1) .

passes the ID composition of Z (t ) to the EVL segment dedicated to that specific SC. PVE and
CTM update the prevalence of the matching SC, directly invoke the encoded SER from BSR
and temporarily store it at EMS2 (on behalf of the specific Z (t )) . The process continues to (4).

(4) The CCL is declared available. If there has been processed and accumulated in EMS2 at least
ω instances of the same Z (t ) (with t ∈ [0, . . . ,Ω]) the process continues to (5), otherwise it
returns to (1) to track for updates on the same or another Z (t ) .

(5) HSE in (T) mode compares the encoded SER at EMS2 against BTC through the ω buffer
window, in strides of 1 (for a maximum of ω ∗ α strides) seeking for any equivalent chain of
at least ω encoded SERs. If a high-similarity (temporal) event is NOT detected the process
continues to (6.a), otherwise it continues to (6.b).

(6) (a) The ω concatenated SER vectors of Z (t ) are jointly scheduled to a single available TEU
at the neural circuit. The selected TEU will sequentially process the vectors to produce H (t )

encoded as a TER which is representing a single stride of the window ω. The process con-
tinues to (7). (b) PVE and CTM update the prevalence of the matching TC, directly invokes
the encoded TER associated with the matching chain from BTR, and feed it to any available
TEU as H (t ) input. The process continues to (7).
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Table 2. Synthesis and Benchmarking Equipment Utilized in this Study

DRAGON MFO DynGEM node2vec / dynnode2vec
Intel Stratix 10 SX (2800) IMAN1 (CELL processor) 32 cores CPU 7 cores CPU

244 Mb SRAM 3.2 Ghz 2.6 Ghz 3.6 Ghz
16 GB DDR SDRAM 256 MB per CELL 128 GB RAM 64 GB RAM

GPU K40C GPU: N/A
PMFO-LP hardware information is deducted from CELL nominal information [6]. DynGEM, node2vec, and
dynnode2vec common equipment information is directly provided by dynnode2vec study [37].

(7) For H (t ) , If t < Ω, CTC writes TER at BTR in a position according to the last timestep
analyzed, then the process returns to (1) to wait for updates of the same or additional Z (t ) . If
t = Ω then the temporal sequence has reached the last timestep, in this case, H (t ) is passed
directly to TCL to produce a new predicted SER for timestep t = Ω + 1, then the process
continues to (8).

(8) At the heuristic circuit, DNI reads the SIO predicted SER and localizes the EVL sector related
to the “winner” SC. DNI compares the IDs inside each event at the winner SC with IDL and
ranks them by the level of concurrence. For instance, if no event was found to contain this
ID, DNI checks the next ID iteratively until confirming at least k IDs. The link prediction of
current Z (t ) at t = Ω + 1 will be equal to the IDs that form the specific winner event from
the winner SC at EVL, with the winner event signalized by the very top of DNL. The process
continues to (9).

(9) After the specific SIO link prediction is completed, EMS1, EMS2, IDL, and DNL are reset,
while EVL is kept unchanged being valid for all successive SIOs at this point. The process
continues to (2). END.

6 EXPERIMENTAL SETUP

DRAGON has been designed as a customized logic within a generic SoC environment. It is not
attached to any specific IP, except for those related to the native bus communication and I/O re-
sources. The specific synthesis device is an Intel programable acceleration card D5005 with a Stratix
V GX 5SGXEA7K2F40C2 FPGA chip. More details of the implementation device of DRAGON and
the rest of baselines are shown in Table 2. Optimal values for neural weights, bias, and flexible
fixed-point distribution have been pre-calculated by software means [13, 52].

To demonstrate the applicative and functional characteristics of our accelerator, we analyze
DRAGON from three main perspectives:

Algorithmic characteristics: As DRAGON runs over a hardware-based acceleration premise,
we firstly compare our approach against mainstream software implementation. In this sense, we
present the execution time and AUC accuracy of DRAGON for AS and Hep-th datasets (detailed
in Table 3) [29], under eight different magnitudes at ρ = {1, 2, 4, 8, 16, 32, 64, 128}.

The results are contrasted with those reported in three state-of-the-art algorithms, deployed in
software and regular multi-purpose CPU-based systems, these are DynGEM [15], node2vec [16],
and dynnode2vec [37].

Next, taking dynnode2vec results as baseline and Hep-th as dataset, we present the effects on
speed-up and accuracy, of modifying the key design parameters in DRAGON: ω, α , ϵ, and φ and
analyze the slope caused in the graphic.

Physical characteristics: To analyze the specific hardware qualities of DRAGON, we take
PMFO-LP [3] as the baseline. Basic acceleration principles of PMFO-LP are shared by our design,
however, PMFO-LP is deployed in a super-computer named IMAN1, motored by a network of CELL
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Table 3. Dataset Utilized in Present Study

Dataset V E Degree
USAir 332 2,126 6.4
NetScience 1,589 2,742 1.72
Political Blogs 1,222 5,366 4.39
Yeast 2,375 6,136 2.58
Router 5,022 6,258 1.24
King James 1,773 9,131 5.15
Hep-th 34k 421k 12.38
AS 6k 13k 2.16

Number of vertices (V ), number of edges (E) and degree.

processors and plenty of computing power and memory capacity. Inherently, PMFO-LP does not
concern with resource consumption as much as with raw acceleration.

In this context, we present the speed-up of DRAGON under “training” and “trained” modes
against the results reported in PMFO-LP, throughout six different size datasets (as detailed in
Table 3): USAir, NetScience, Political blogs, King James, Yeast, Router [43, 51].

Since PMFO-LP does not report on power efficiency, we have calculated a relationship between
the nominal power consumption of CELL [6] (estimated on 80 Watts at 4 GHz), the number of CELL
units involved, and the reported graph/execution time. Please notice that the estimation does not
include other of their components potential expenditures.

We contrast the calculated value to the power requirements of DRAGON which is obtained
through Quartus power analyzer built-in tool. Next, based on the aforementioned results, we report
the scalability quality of DRAGON versus PMFO-LP. Finally, it is reported the on-chip memory and
area demand for the maximum size configuration at ρ = 128.

Functional characteristics: To introduce the data-driven benefits of DRAGON, we have con-
structed a bipartite dataset that intermingles between a pure AS and a modified version of Hep-th
pruned to the size of AS.

Although both datasets exhibit relatively similar degrees, they correspond to different originat-
ing phenomena, thus containing different structures. The intention is to mimic the conditions of
a realistic data-driven environment where a sudden change in the structures populating the sen-
sorial network may occur.

The ability of the system to recover from data-driven changes should be in line with its neural
resource’s promptness to come back to zero utilization. In this regard, we analyze DRAGON un-
der two modalities: (a) Full implementation and (b) Implementation excluding the mechanism for
partial update/delete of SCs, in other words, removing the ability of the system to deal with the
arrival of new structures after precedent structures have been detected.

This way, data-driven quality should be measurable by the ratio of direct neural operations
throughout time completion. Since DRAGON contains networks of PEs, it is also necessary to
study the general workload distribution. For this, we calculate and present, the median standard
deviation based on the totality of NPs workload throughout completion time, with the number of
SEUs varying by ρ = {8, 32, 128}, accordingly.

7 PERFORMANCE ANALYSIS

7.1 Algorithmic Characteristics

In Figure 5(a) and its respective report in Table 4, it can be observed that in general, the smaller
configurations of our hardware-based accelerator were directly able to surpass two of the software-
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Fig. 5. (a) From left to right, link prediction execution time in seconds (logarithmic scale) for datasets AS (dark
blue bars) and Hep-th (light blue bars). The comparative includes three state-of-the-art algorithms results as
reported in articles, versus DRAGON under three different size configurations ρ = {1, 2, 4, 8, 16, 32, 64, 128}.
Dotted lines mark the best results from baseline and are utilized as a reference. In all cases, data is delivered
organized and steady, i.e., not considering the data-driven scenario. (b) From left to right, link prediction
accuracy is quantified by area under curve (AUC) for datasets AS and Hep-th. Each reading belongs to its
respective measure from (a).

Table 4. Numerical Report on (a) Link Prediction Execution Times (seconds) and (b) the Related
Accuracy Levels (AUC) for Datasets AS and Hep-th

(a) AS Hep-th (b) AS Hep-th
DynGEM 4,812 1524 DynGEM 0.7949 0.555
node2vec 1,393.2 865.2 node2vec 0.6258 0.5577

dynnode2vec 269.4 75 dynnode2vec 0.771 0.6269
DRAGON (1) 152.58 329.45 DRAGON (1) 0.7436 0.5398
DRAGON (2) 83.16 196.65 DRAGON (2) 0.7514 0.5645
DRAGON (4) 51.32 99.79 DRAGON (4) 0.7403 0.5816
DRAGON (8) 32.48 55.15 DRAGON (8) 0.7918 0.6236
DRAGON (16) 11.45 18.90 DRAGON (16) 0.8022 0.6501
DRAGON (32) 5.12 9.53 DRAGON (32) 0.8407 0.6734
DRAGON (64) 2.39 3.96 DRAGON (64) 0.8875 0.6810
DRAGON (128) 1.42 2.15 DRAGON (128) 0.9019 0.7128

A total of eleven models were compared, including three CPU-based baselines (as reported) and hardware-based
DRAGON at eight different size configurations.

based baselines i.e., DynGEM and node2vec for a good margin. This already demonstrates a suc-
cessfully functional implementation of the prediction task.

Specifically against the fastest baseline dynnode2vec, a single core of DRAGON only provides
a mild acceleration in the case of AS (1.76× dynnode2vec) or is markedly slower in the case of
Hep-th (−4.39× dynnode2vec). As a hardware-based accelerator, it is expected to widely surpass
its baselines running at intrinsically less efficient multi-purpose CPUs.

Looking in detail at the evolution of size configurations, we can observe that the performance
of DRAGON is greatly improved by the number of PEs in the network. In the case of AS, the
execution time is drastically reduced down to the largest configuration tested at ρ = {32, 64, 128},
with speed up reaching around 5×, 112×, and 191× dynnode2vec, respectively.

This outstanding scalability is even more noticeable for the case of Hep-th, where our accelerator
was already able to surpass dynnode2vec at a size of ρ = 8, producing a definitive speed-up of 34.88×
dynnode2vec at ρ = 128.
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Fig. 6. (a) Effects of key parameters variance on speed-up regarding reported baseline results. At the abscissa,
parameter’s variance is shown in terms of percentage from the total temporal length (%Ω). The parameters
studied are the size of sliding window ω, total storage capacity for centroids α (102×), total storage capacity
for events per centroid ϵ and the upholding coefficient φ (14× cycles). At the ordinate, the speed-up are
obtained from report (× dynnode2vec). Parameter’s behavior is analyzed from the slope m generated by
each respective curve. (b) Effect of key parameters variance on accuracy (AUC).

Another important observation is that, since the considered number of timesteps is different for
AS than for Hep-th, baseline algorithms report longer execution times for the first dataset than for
the second. In contrast, our accelerator exhibits longer processing times for Hep-th than for AS.
This indicates that DRAGON is influenced more by the degree of the graph than by the number
of temporal stages. Dataset sparsity and the number of PEs also play a fundamental role in the
accuracy of DRAGON.

The approximation technique within NPs initially induces a small degree of inaccuracy to
DRAGON. As can be seen from Figure 5(b), this effect is less evident for the AS dataset, but it is dis-
tinguishable for Hep-th and its comparatively lower sparsity (12.38 degree points). Also, smaller
configurations of DRAGON tend to perform with lower accuracy than those reported by dynn-
ode2vec. However, at larger configurations, the metric tends to progressively improve.

In this order, at ρ = 16 we can already observe an advantage over dynnode2vec, with AUC =
0.65, improving until ρ = 128 with AUC = 0.71. Indeed, by enlarging the PE network, DRAGON is
provided with additional parallel CCLs for the similarity estimation circuit. Then, each CCL has
independent capacity to discriminate and contribute to/from the common bank of centroids, based
on different arriving nodes.

This method divides the risk of misclassification and eventually drives to better accuracy results.
Next, we analyze the effects of directly modifying the main hyperparameters in our design which
are presented in terms of % ω. In Figures 6(a) and 6(b) and their respective reports in Table 5, it
can be observed that ϵ and φ both have negative slopes for speed-up.

In the case of ϵ , increasing the capacity for events per SC seems to minimally affect speed-
up while strongly enhancing the accuracy of prediction. In the case of ϕ, the drop in speed is
quite evident to the point of impairing the acceleration. Understandably, introducing an upholding
delay to the system caused an exponential drop in speed. Additionally, in comparison with other
parameters, accuracy does not improve by much.

On the other hand, bothω andα produced strongly positive slopes. For both cases, extending the
number of recurrent stages to be considered at a single cycle or storing more SC/TC considerably
improves speed-up. The reason for the first is quite evident since more on-chip resources are being
added to a more immediate comparison process.

For the second, the explanation might be related to a richer set of centroids available for com-
parison, consequently producing earlier matching of ideal centroids. In terms of accuracy, the
provision of a larger chain of stages reduces the introduction of uncertainty in the embedding esti-
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Table 5. Numerical Report on the Effect of Key Parameters Variance in Terms of %Ω for
(a) Speed-up (× Dynnode2vec) and (b) the Related Accuracy Levels (AUC)

(a) Ω ω (%Ω) α (%Ω 102×) ϵ (%Ω) ϕ (%Ω 14×) (b) Ω ω (%Ω) α (%Ω 102×) ϵ (%Ω) ϕ (%Ω 14×)
5 21.24 13.74 55.42 70.89 5 0.5047 0.5016 0.4660 0.5672
10 28.05 16.58 52.19 65.40 10 0.5322 0.5068 0.4842 0.5677
15 34.83 19.40 51.45 61.73 15 0.5464 0.5114 0.5208 0.5682
20 42.71 22.68 50.67 59.48 20 0.5710 0.5163 0.5214 0.5607
25 46.07 22.04 50.80 52.19 25 0.5751 0.5212 0.5440 0.5611
30 48.19 23.15 50.15 48.24 30 0.5857 0.5201 0.5506 0.5691
35 52.44 20.49 50.69 42.17 35 0.5892 0.5311 0.5672 0.5702
40 58.17 23.07 48.37 39.50 40 0.5908 0.5359 0.5738 0.5717
45 61.01 23.69 46.16 34.48 45 0.5917 0.5408 0.5804 0.5746
50 62.53 25.16 45.77 32.15 50 0.6056 0.5407 0.5970 0.5785
55 65.16 28.37 44.12 24.97 55 0.6144 0.5506 0.6036 0.5829
60 76.37 34.65 42.25 22.23 60 0.6298 0.5515 0.6102 0.5810
65 74.12 36.51 43.28 15.31 65 0.6292 0.5604 0.6234 0.5834
70 75.00 42.80 41.44 12.66 70 0.6392 0.5653 0.6366 0.5806
75 80.54 42.92 41.36 6.01 75 0.6341 0.5702 0.6581 0.5808
80 81.38 45.08 41.50 2.33 80 0.6433 0.5771 0.6685 0.5903
85 88.13 58.55 40.16 1.84 85 0.6500 0.5902 0.6799 0.5922
90 90.11 63.40 40.10 0.16 90 0.6594 0.5933 0.6807 0.5904
95 95.52 65.16 38.68 0.35 95 0.6637 0.5801 0.7013 0.5916
100 110+ 66.96 39.17 0.08 100 0.6782 0.5887 0.7146 0.5981

mations, considerably improving accuracy. The improvement when enlarging EVL with capacity
for more events is also present, although is not as definitive as the previous parameter.

7.2 Physical Characteristics

In Figure 7(a) and its respective report in Table 6, we present the acceleration of DRAGON includ-
ing centroid detection delay (training), relative to the results reported by PMFO-LP throughout
different size configurations.

It is noticeable that for smaller ρ configurations and smaller datasets, our accelerator tends to
perform much slower than PMFO-LP. In a single-core comparison, the lowest marker is in USAir
at around −3.65× under PMFO-LP. This relation quickly improves as we provide proportionally
larger datasets, with only around −0.56× under PMFO-LP for Router dataset.

Once again and as seen in 8.1 apart: algorithmic analysis, the number of PEs seems to be a strong
determinant in performance. At ρ = 8, our accelerator is already able to catch up with PMFO-LP
in terms of execution time, with 0.024× and 0.071× above PMFO-LP for Yeast and Router datasets,
respectively. At ρ = 64 all dataset relations are positive and at ρ = 128 the best results are displayed,
with the lowest score of 0.49× above PMFO-LP for USAir, and the highest of 1.12× above PMFO-LP
for Router dataset.

Conversely, in Figure 7(b) its respective report in Table 6, we present the performance results
once SCs have been fully detected and duly stored (trained). We can observe that in this case, the
scalability relation becomes more balanced for both extremes.

In the worst case, with the smaller dataset and ρ = 1, DRAGON was able to execute the task at
around −1.44× slower than PMFO-LP, this is more than three times the acceleration of the “train-
ing” modality. Under this modality, our accelerator was able to catch up earlier to PMFO-LP results
for as little as ρ = 4. By ρ = 16, all the datasets have positive relations and the best results are exhib-
ited at ρ = 128 for the Router dataset, at around 1.59× above the much more resourceful PMFO-LP.
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Fig. 7. Maximum achieved speed-up (a) including centroids training delay and (b) after completed centroids
training. Magnitudes are relative to PMFO-LP (as reported) times for six different sizes of real-world datasets
[43, 51]. (c) Power efficiency is represented in Graph per Kilojoule (logarithmic scale) for PMFO-LP and
DRAGON (trained and training) at Router dataset [51]. PMFO-LP power demand is calculated from its core
Cell microprocessor, according to its nominal characteristics [6], not including other power expenditures.
(d) Scalability of PMFO-LP (as reported) and DRAGON (training and trained perspectives) at Router dataset.
Scalability measures the speed-up over the previous smaller network configuration, represented in % above
previous ρ. For all cases, design parameters set to: ω = 20%, α = 75% (102×), ϵ = 60%, and φ = 35 (14× cycles)%.
Network sizes tested as ρ = {1, 2, 4, 8, 16, 32, 64, 128}.

These results demonstrate that, even though a single core of DRAGON cannot individually
compete in speed against a single CELL processor from PMFO-LP, the scalability of our solution
was able to ultimately surpass PMFO-LP when the right amount of hardware resources was
granted.

Moreover, for a potential in-place online implementation, over a fairly stable sparse dataset, a
centroid pre-trained system is perfectly practical. In this specific scenario, DRAGON was able to
perform considerably better than its PMFO-LP counterpart in more than half of the cases. Notice
that all these results are produced by only a fraction of the power required from PMFO-LP, and
with constrained hardware resources.

In that regard, the definitive hardware benefits of our implementation are further reflected in
Figure 7(c) and (d). In the first, it is reported the power efficiency calculated for PMFO-LP and
obtained from DRAGON in trained and training modes. It is observable that for all three cases,
increasing the number of parallel PEs steadily improves power efficiency, this indicates excellent
energy-wise scalability.

In Figure 7(c), the estimated efficiency of PMFO-LP varies from 1,137 graph/kJ for ρ = 1, to
44,076 graph/kJ for ρ = 128. For DRAGON in training modality, we have managed to obtain
efficiency from 6,319 graph/ kJ and 183,775 graph/kJ, at the previously described sizes. Mean-
while, DRAGON in trained modality becomes the best energy-wise solution, with 20,549 and
419,633 graph/ kJ for the described sizes.
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Table 6. Execution Time (in milliseconds) as Reported by PMFO-LP at [3] Followed by DRAGON Under
Training and Trained Modalities, for Six Real-World Temporal Datasets and Eight (ρ) Size Configurations

PEs (ρ) Baseline USAir Political NetScience King James Yeast Router
1 PMFO-LP 10,130 13,000 23,842 25,692 55,192 81,790

DRAGON (training) 47,176.828 54,600.273 90,616.503 81,040.326 109,098.578 127,602.950
DRAGON (trained) 24,789.528 26,130.377 44,260.503 39,419.286 69,818.818 96,761.577

2 PMFO-LP 6,581.769 8,299.815 13,803.05 14,255.91 30,425.58 43,714.59
DRAGON (training) 29,002.894 31,604.118 42,608.924 39,986.017 52,615.290 61,243.572
DRAGON (trained) 13,864.876 15,683.853 22,421.909 20,686.465 33,691.522 44,205.854

4 PMFO-LP 4,055.407 5,040.127 8,684.661 9,302.966 19,852.52 28,623.92
DRAGON (training) 15,416.800 18,157.359 26,158.971 17,804.118 25,841.552 31,504.631
DRAGON (trained) 6,890.237 7,623.495 10,431.414 8,962.243 16,639.923 23,416.802

8 PMFO-LP 2,091.895 2,617.063 4,310.301 4,469.184 9,503.573 13,511.19
DRAGON (training) 6,327.361 6,658.179 7,974.690 7,682.840 9,735.051 14,477.064
DRAGON (trained) 2,593.972 3,039.975 4,268.245 3,793.990 7,258.303 8,727.905

16 PMFO-LP 960.335 1,193.372 2,134.429 2,213.149 4,721.341 6,526.128
DRAGON (training) 1,886.205 2,189.410 2,829.593 2,560.907 5,294.780 5,445.228
DRAGON (trained) 945.319 932.385 1,583.178 1,477.007 2,856.229 3,803.537

32 PMFO-LP 500.922 637.561 1,016.491 1,074.386 2,258.746 3,170.278
DRAGON (training) 815.445 747.119 958.709 858.693 1,682.341 2,135.236
DRAGON (trained) 284.269 356.194 560.227 586.188 1,139.056 1,592.064

64 PMFO-LP 292.392 367.435 623.965 658.324 1,384.313 2,014.626
DRAGON (training) 213.661 252.510 397.389 406.387 776.355 1,083.808
DRAGON (trained) 152.369 185.628 289.928 300.749 614.896 869.536

128 PMFO-LP 337.373 429.288 643.858 708.352 1,424.229 2,053.147
DRAGON (training) 225.142 270.822 344.279 370.876 693.699 964.443
DRAGON (trained) 163.855 202.550 292.379 313.576 571.682 790.615

Looking in detail at the speed-wise scalability report of Figure 7(d), we find that for each net-
work size, PMFO-LP outperforms each of its previously tested configurations with relative stability.
However, a sudden drop at its maximum ρ = 128, exposes scalability issues of their implementa-
tion. By contrast, DRAGON has scaled much better in all of its tested configurations including the
largest one (although with a similar pace than PMFO-LP). In general, these results confirm that
our parallel implementation is in general more scalable and stable than PMFO-LP.

In Figure 8(a), we present the definitive on-chip memory of DRAGON for the largest configu-
ration tested at ρ = 128. The first includes a breakdown per memory sectors stored at DRAM and
a circular distribution representation in % from the total on-chip memory utilization. It can be
seen that the on-chip memory shared sectors, which are mostly destined for the ω window and
buffering, are the largest division within DRAGON, approximately 63% over the totality.

Meanwhile, the actual structural and temporal operational demand including SEUs, TEUs, and
MAUs, together both do not require more than 25% of the totality. This is expected since the key
operational principle of ω window is inherently memory-intensive even when compared with
the requirements of neural operations. Despite this difference, the utilization of ω window still
represents a better investment in terms of total resources.

In Figure 8(b), we present the logic demand breakdown of DRAGON, according to the functional
circuit served. Each functional group is represented in terms of ALMs. As around 90% of the chip
is occupied by the NPs, the largest resource division is dedicated to the MAUs with around 60% of
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Fig. 8. (a) On-chip memory demand breakdown, per memory sectors in % regarding totality (circle), plus each
sector resulting size in Mb (list). (b) On-chip area demand breakdown, per functional group in % regarding
totality (circle), plus each group resulting number of ALMs (list). For all cases, at the largest size configuration
ρ = 128 with design parameters set to: ω = 20%, α = 75% (102×), ϵ = 60%, and φ = 35 (14× cycles)%.

the chip utilized while the second largest is related to the SEUs with 25%. Notice how only around
10% of the chip is required for the SPs and other auxiliary logic. This demonstrates the reduced
burden that our proximity-based logic brings to the chip area.

We have also managed to abstract a large portion of MAC resources out of each structural proces-
sor (differently than originally conceived in ACE-GCN) into a distributed MAU service for multi-
ple SEUs and TEUs. Finally, the estimated bandwidth requirements were adequately kept between
243 Gbps and 366 Gbps approximately (depending on the configuration and dataset), producing
stable long-term operation at 267 MHz.

7.3 Functional Characteristics

In Figure 9(a), we can observe the response quality of DRAGON with the centroids updating ca-
pacity and without it (causing a full reset of centroids when meeting criteria). After stabilizing the
centroids training stage at around 35% to task completion, the accelerator is suddenly fed with a
structurally bipartite dataset. When including the centroid updating mechanism, we can observe
that neural circuit utilization shortly rises at around 10% before dropping again to zero utilization,
taking no longer than 10% of the total time to produce this recovery.

Meanwhile, when detaching the updating element that forces the recalculation of centroids, the
neural utilization drastically tops +70% of utilization before starting the slow trajectory back to
zero utilization, which occurs at around 80% of the processing time analyzed.

The results demonstrate that when DRAGON is detached from its capacity of centroid reutiliza-
tion, an important difference in terms of computing complexity occurs. This confirms also that our
accelerator is appropriately shielded against sudden dataset structural modifications, successfully
inheriting the data-driven qualities from its static predecessor.

Finally, in Figure 9(b), we present the results of our accelerator concerning its multi-processing
workload quality of distribution. The median standard deviation individually calculated for three
cases ρ = 8,32,128 from the totality of SEUs involved, shows that in general, workload distribution
is better for the smaller configurations. In the case of ρ = 128, even though the workload may seem
somewhat unbalanced in the beginning, with around 75.64 points of deviation and populated with
steep spikes, in general, it exhibits descending tendency.

A minimal is reached at 21.19 points at around 30% to completion time, after which devi-
ation fluctuates between this and 43.84 maximum points for the rest of the processing time.
According to these results, we may conclude that the workload distribution of DRAGON is
satisfactory.
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Fig. 9. (a) Data-driven quality of response against sudden dataset structural changes. Two configurations
are studied: (dark blue line) with on-the-fly BSC/BTC updating capacity and (light blue line) without BSC
updating capacity and BSR/BTR reset. Abscissa is % to task completion, ordinate is % of neural resources oc-
cupancy by direct embedding calculation, in opposite to embedding by estimation. The dotted vertical line
indicates the completion time % from which a bipartite dataset starts to get introduced to the system. Small
arrows along the abscissa indicate the zero-point utilization of neural resources. For both cases, tested at
ρ = 128. (b) NPs network workload, quality of distribution. Abscissa is % to task finalization. Ordinate rep-
resents the median standard deviation based on individual workloads from all the NPs available at network
sizes ρ = {8, 32, 128}. Design parameters set to ρ = 20 %, α = 75% (102×), ϵ = 60%, and φ = 35(14× cycles) %.

8 CONCLUSIONS

In this work, we present DRAGON, a novel resource and energy-efficient hardware accelerator
developed for high-speed dynamic link prediction. It is a powerful, scalable, and reliable FPGA-
based solution aimed at real-time embedded sector with competitive accuracy and outstanding
resource-efficiency results. In essence, we optimize a more resource-demanding PMFO-LP high-
performance approach to graph link prediction by shortening the computation path of each
PE in the network through the introduction of a smart temporal-structural reference and auto-
completion system, which is, in turn, adapted from our previously developed static proximity-
based accelerator into the current dynamic requirements.

In comparison with state-of-the-art multi-purpose CPU-based implementations, our customized
FPGA-IP was able to surpass the faster of those considered (dynnode2vec) by roughly 191× for the
largest size configuration tested ρ = 128 and with an improvement of 14.42% in accuracy. When
directly compared against the high-performance physical implementation of PMFO-LP, DRAGON
demonstrated to escalate well toward the inference when assigned enough resources. At ρ = 16, our
implementation already surpasses PMFO-LP in every dataset, and at ρ = 128 it was able to exceed
acceleration by 1.12× and 1.59× above PMFO-LP for the training and trained modes, respectively.
At the maximum ρ, this drives an estimated power gain over PMFO-LP of around 71.49% and
89.59% for the training and trained case, respectively.

The superb speed-up acceleration, improved accuracy ratios, and strong scalability advantage
of our implementation are explained from four perspectives: (1) Each PE within DRAGON is less
computationally complex and more data straightforward than the pseudo-multi-purpose CELL
microprocessor within PMFO-LP. (2) Further improved PMFO-LP approach to link prediction by
exploiting the overlapping trajectories tendencies between moths. (3) Opportunities for fast con-
volutional estimations prior to the pre-processing stage. (4) In general, a more elaborated neural
network and multi-processing configuration.

More importantly, due to its unique operational principles, DRAGON exhibits effective fault-
tolerant shielding and data-driven functionalities nonexistent in PMFO-LP or any other link pre-
diction implementation so far, adding our accelerator even more applicability into the high-speed
embedded computing field.
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