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In-memory Frameworks 

→ Small size graphs

→ Memory footprint > raw data size

Background: Graph Processing

Kmeans Label PropagationPagerank

Graph Applications

Graph applications demand better memory performance on large memory sizes
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Out-of-core Frameworks 

→ Medium-size graphs

→ Performance issue due to I/O bottleneck

Distributed Frameworks

→ Very large graphs

→ Communication overhead

Existing Graph Processing Frameworks:



Background: Disaggregated Architecture

Disaggregated Architecture Opportunities:

• Large memory capacity

• Scalability and elasticity

RDMA-based Far Memory：

• No-CPU-involved execution model

• Near-DRAM application performance
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Background: Comparison of Execution Models

• There are three architectures of memory expansion ways for graph processing.

Far memory system provides a new option for scaling out graph processing on 

both single-node and distributed-computing systems.
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Background:  Far Memory Current Issues 

Swap space

Frontswap

Main memory
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Current Issues:

• Kernel overhead

→ Undermine kernel-bypass RDMA performance

→ Significant context switching overhead

• Swap-based data replacement strategy

→ Passively triggered

→ No decision for thrown-out parts

• Page-size based data transfer

→ Offloading data size is fixed

→ Not efficient enough 

Designing user-level and application-aware data offloading method is necessary. 
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Motivation: Duration Analysis
We run graph applications on far memory and analyze the behavior of task durations.

• Observation 1: Turning points of latency trends

→ Memory offloading of graph workloads should be careful.
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BFS

• Observation 2: Duration increase is caused by page faults at the kernel level

→ Designing user-level far memory access operations is essential.



Motivation: Efficiency Issue
We transfer data through RDMA with different chunk sizes and compare the overall latency.

• Observation 1: Latency differs on different chunk size

→ Choose a proper chunk size for better total performance
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• Observation 2: Data may be overwritten if using RDMA operation unproperly

→ Set buffers when communication with far memory



Motivation: Opportunities

Key Oppty. of Optimizing Graph Workload: 

• Distinctive data segments

• Large size of read-only edge data

• Iterative execution model

Key Oppty. of Utilizing RDMA Mechanism: 

• High-throughput memory access

• High-performance one-sided operations

• Turning knob configurations
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A high-performance graph-aware data offloading and fetching strategy
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Fargraph Design

Fargraph mainly consists of two parts:

The front-end: graph-aware data segment offloading strategy

The back-end: iteration-friendly far memory interaction optimization
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Fargraph Front-end: Data Segment Offloading 

• Graph applications show obvious page allocation areas of each data segment

such as parents of vertices, frontiers of vertices, edge lists, etc.

• Different data segments show obviously different memory read/write behaviors.

Distinguished data 

segments (working 

sets) of graph 

BFS
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(1) Graph Data Segment Grouping: We analyze data segments of graph programs and

classify them into 4 groups according to the memory offloading sensitiveness.

Fargraph Front-end: Data Segment Offloading 
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(2) Flexible Data Segment Offloading: We give preferable offloading orders of data

segments to offload data in an efficient and auto-tuning way.



(1) Data Segment Splitting:
• Split data segments into chunks

• Use indexes to facilitate data segment fetching from far memory

• Choose proper chunk size to have better overall performance

Fargraph Back-end: Far Memory Interaction Optimization
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(2) Data Segment Buffering:

• Use RDMA read and write operations to avoid the kernel overhead

• Design buffers that support iteration pipeline overlap

• Hide data transfer time into execution time in each iteration

Fargraph Back-end: Far Memory Interaction Optimization
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Fargraph Workflow

(1) Preprocessing ①②

• Build RDMA connection

• Prepare buffers

• Add transferable labels

• Set indexes

• Pre-transfer data to far memory 

Pre-send DSs

Send DS index

Get related DS

Get next DS index 
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(2) Far Memory Coordination. ③④

• Send indexes

• Fetch them back in order

• Write the data into buffers

• Copy buffer to the local region 



Directive-like Implementation

We provide such interfaces :

• Add_transferable_flag() → makes offloading decisions 

• Build connection() → starts RDMA network connection

• Far_write_start() → triggers the memory registration and 

start writing data to far memory

• Far_write_complete() → returns once the sending data is 

accomplished

• Far_read_start() → starts fetching each data segments by 

one-sided read

• Far_read_complete() →returns the rkey and index of the 

fetched data when the data transmission finishes
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Evaluation: Experimental Environment

• Hardware: 

• Two server nodes

• 128 GB of memory

• Dual port Mellanox 

ConnectX-5 RDMA NIC.

• Software: 

• Cgroup2 to limit the 

memory usage

• OFED v4.3.0 with RoCE

protocol to use RDMA. 
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Evaluation:  Efficiency of the Front-end Design

• We show lower task durations, especially when far memory ratio is large. 

• We have a larger available far memory resource with acceptable performance.

The duration of BFS on dataset LJ and FR on far memory platform Fargraph and Fastswap under rising far memory ratios
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Evaluation:  Efficiency of the Back-end Design

• The duration under 32K and 256K chunk size is higher than 4K(Page size).

• The best far memory chunk size is determined by the smaller one 

between RDMA bandwidth and PCIe bandwidth.

(1) Performance Impact of Data Segment Splitting

The normalized performance of four workloads (BFS and Pagerank on dataset LJ and OR) with different chunk sizes.
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Evaluation:  Efficiency of the Back-end Design

• Data segment buffering brings task duration down by up to 19%.

• The duration reduction of BFS is stable while that of PageRank may 

increase significantly on larger graph datasets.

(2) Performance Impact of Data Segment Buffering
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Evaluation:  Overall Performance

• Computation-centric algorithms such as Pagerank and Radii performs 

better compared to the traversal-centric algorithms, such as BFS and WCC.

• Fargraph shows demonstrate the attractive scalability 

• We can achieve 6.9× better performance compared to Original, and up to 

8.3× performance compared to Fastswap. 

The total performance comparison of 16 graph workloads with 80% far memory
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Evaluation:  Cost-Effectiveness of Memory Capacity
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• The cost of each NVLink-based machine is almost 10-100x more expensive 

than a RDMA-based machine.

• The cost-effectiveness of RDMA-based design can be better when the 

requested extra memory capacity is in the range of 128-512G. 



Conclusion

In this work, we explore the potential of graph processing on far memory.

• Capturing graph properties, the data segment grouping method can

achieve better far memory offloading effectiveness.

• Configuring the data transfer carefully, the data splitting and buffering

can improve performance of iterative graph execution model.

• Our design opens a door for more efficient big data analysis in the next-

generation cloud on disaggregated architecture.

• We will continue to improve our design for better scalability and higher

memory efficiency in the future work.
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