
Excavating the Potential of Graph Workload

on RDMA-based Far Memory Architecture

Jing Wang, Chao Li, Taolei Wang, Lu Zhang, Pengyu Wang, Junyi Mei, Minyi Guo

Department of Computer Science and Engineering, Shanghai Jiao Tong University，

Shanghai, China

• Background

• Motivation

• System Design

• Evaluation

• Conclusion

Outline

1

In-memory Frameworks

→ Small size graphs

→ Memory footprint > raw data size

Background: Graph Processing

Kmeans Label PropagationPagerank

Graph Applications

Graph applications demand better memory performance on large memory sizes

2

Out-of-core Frameworks

→ Medium-size graphs

→ Performance issue due to I/O bottleneck

Distributed Frameworks

→ Very large graphs

→ Communication overhead

Existing Graph Processing Frameworks:

Background: Disaggregated Architecture

Disaggregated Architecture Opportunities:

• Large memory capacity

• Scalability and elasticity

RDMA-based Far Memory：

• No-CPU-involved execution model

• Near-DRAM application performance

Computing Node

Memory pool
Network

Memory Node

R
D

M
A

CPUs
DIMM
DIMM

Memory Node

CPUs
DIMM
DIMM

…
…

3

Background: Comparison of Execution Models

• There are three architectures of memory expansion ways for graph processing.

Far memory system provides a new option for scaling out graph processing on

both single-node and distributed-computing systems.

OFED Interface

Far memory system

memory limitation configuration

OS swap Kernel

Graph program Graph data+

memory

CPU

R
D

M
A

R
D

M
A

OFED Interface

CPU

Far memorymemory Storage

CPU

Swap space configuration

Graph program

OS swap Kernel

Graph data+

Single-node system

OFED Interface

Distributed system

memory

CPU CPU

OFED Interface

memoryR
D

M
A

GP part 1

GD part 1
+

R
D

M
A

GP: Graph Program

GP part 2

GD part 2

GD: Graph Data

4

Background: Far Memory Current Issues

Swap space

Frontswap

Main memory

Disk

Cache

TLB MMU

RDMA
swap

kernel

Page fault

write

LRU

apps

pages
read

Swap mechanism

RDMA RDMA

Far memory

Current Issues:

• Kernel overhead

→ Undermine kernel-bypass RDMA performance

→ Significant context switching overhead

• Swap-based data replacement strategy

→ Passively triggered

→ No decision for thrown-out parts

• Page-size based data transfer

→ Offloading data size is fixed

→ Not efficient enough

Designing user-level and application-aware data offloading method is necessary.

5

• Background

• Motivation

• System Design

• Evaluation

• Conclusion

Outline

6

Motivation: Duration Analysis
We run graph applications on far memory and analyze the behavior of task durations.

• Observation 1: Turning points of latency trends

→ Memory offloading of graph workloads should be careful.

7

BFS

• Observation 2: Duration increase is caused by page faults at the kernel level

→ Designing user-level far memory access operations is essential.

Motivation: Efficiency Issue
We transfer data through RDMA with different chunk sizes and compare the overall latency.

• Observation 1: Latency differs on different chunk size

→ Choose a proper chunk size for better total performance

8

• Observation 2: Data may be overwritten if using RDMA operation unproperly

→ Set buffers when communication with far memory

Motivation: Opportunities

Key Oppty. of Optimizing Graph Workload:

• Distinctive data segments

• Large size of read-only edge data

• Iterative execution model

Key Oppty. of Utilizing RDMA Mechanism:

• High-throughput memory access

• High-performance one-sided operations

• Turning knob configurations

9

3

1 2

4 5 6

1,3
1,4
2,3

3,4
3,5
3,6

4,1 4,5

1,2,3 4,5,6

1,
2,
3
4,
5,
6

Graph data blocks Active side (Client Server)

RDMA NIC

Complete Queue HCA HCA

buffer

Passive side (Memory Server)

RDMA Channel

RDMA NICbuffer

A
p

p
li

ca
ti

o
n

 lo
ca

l m
em

o
ry

F
ar

 r
es

id
en

t
m

em
o

ry

Send Queue

Receive Queue

Complete Queue

Send Queue

Receive Queue

Our System:

A high-performance graph-aware data offloading and fetching strategy

• Background

• Motivation

• System Design

• Evaluation

• Conclusion

Outline

10

Fargraph Design

Fargraph mainly consists of two parts:

The front-end: graph-aware data segment offloading strategy

The back-end: iteration-friendly far memory interaction optimization

11

Fargraph Front-end: Data Segment Offloading

• Graph applications show obvious page allocation areas of each data segment

such as parents of vertices, frontiers of vertices, edge lists, etc.

• Different data segments show obviously different memory read/write behaviors.

Distinguished data

segments (working

sets) of graph

BFS

12

(1) Graph Data Segment Grouping: We analyze data segments of graph programs and

classify them into 4 groups according to the memory offloading sensitiveness.

Fargraph Front-end: Data Segment Offloading

Data segments (DS) Amount
I/O pressure

Classification
Write Read

Vertex ids, attributes,
frontiers, parents, etc.

Small Much Much
DS-Group 1
(MO sensitive)

Intermediate variables,
iterators, etc.

Small Much Few
DS-Group 2

(MO less sensitive)

Edge blocks, edge offsets,
weights, etc.

Large Few Much
DS-Group 3

(MO less insensitive)

Disposable data, inactive
vertices, etc.

Depend Few Few
DS-Group 4

(MO insensitive)

Partition

L
o

ca
l s

id
e

R
em

o
te

 s
id

e

Auto-tuning
transferable data

segments
(in DS-Group 3, 4)

Local resistant
data segments

(in DS-Group 1, 2)

13

(2) Flexible Data Segment Offloading: We give preferable offloading orders of data

segments to offload data in an efficient and auto-tuning way.

(1) Data Segment Splitting:
• Split data segments into chunks

• Use indexes to facilitate data segment fetching from far memory

• Choose proper chunk size to have better overall performance

Fargraph Back-end: Far Memory Interaction Optimization

Chunk 1-1

Chunk 1-2

Chunk 2-1

Data
segment 1

Data
segment 2

rkeylkey

rkeylkey

rkeylkey

Sge List

Chunk 1-1

Chunk 1-2

Chunk 2-1

ChunksData segments

split each data segment into chunks

Far memory access
Data segment 1

Data segment 2

Set indexes to fetch data segments

Data segment
calls Data segment 2

0

0.5

1

1.5

2

2.5

3

RDMA chunk Size

Latency (s)

0.4 Million Vertices
4 Million Vertices

10 Million Vertices

14

(2) Data Segment Buffering:

• Use RDMA read and write operations to avoid the kernel overhead

• Design buffers that support iteration pipeline overlap

• Hide data transfer time into execution time in each iteration

Fargraph Back-end: Far Memory Interaction Optimization

15

…

Start transfer i

End transfer i

Send vertex offset

Get edges

Get neighbors

vertex value compute

Get edges

Send vertex offset

Get neighbors

vertex value compute

Start transfer i+1

End transfer i+1
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖+1
×N

W
it

h
 o

ve
rl

ap
W

it
h

o
u

t
o

ve
rl

ap

…

Time

Fargraph Workflow

(1) Preprocessing ①②

• Build RDMA connection

• Prepare buffers

• Add transferable labels

• Set indexes

• Pre-transfer data to far memory

Pre-send DSs

Send DS index

Get related DS

Get next DS index

Local computation

①②

④

Graph program：

𝐼𝑡
𝑒𝑟
𝑎
𝑡𝑖
𝑜
𝑛
𝑖
×

N

next③

16

(2) Far Memory Coordination. ③④

• Send indexes

• Fetch them back in order

• Write the data into buffers

• Copy buffer to the local region

Directive-like Implementation

We provide such interfaces :

• Add_transferable_flag() → makes offloading decisions

• Build connection() → starts RDMA network connection

• Far_write_start() → triggers the memory registration and

start writing data to far memory

• Far_write_complete() → returns once the sending data is

accomplished

• Far_read_start() → starts fetching each data segments by

one-sided read

• Far_read_complete() →returns the rkey and index of the

fetched data when the data transmission finishes

17

• Background

• Motivation

• System Design

• Evaluation

• Conclusion

Outline

18

Evaluation: Experimental Environment

• Hardware:

• Two server nodes

• 128 GB of memory

• Dual port Mellanox

ConnectX-5 RDMA NIC.

• Software:

• Cgroup2 to limit the

memory usage

• OFED v4.3.0 with RoCE

protocol to use RDMA.

19

Evaluation: Efficiency of the Front-end Design

• We show lower task durations, especially when far memory ratio is large.

• We have a larger available far memory resource with acceptable performance.

The duration of BFS on dataset LJ and FR on far memory platform Fargraph and Fastswap under rising far memory ratios

20

Evaluation: Efficiency of the Back-end Design

• The duration under 32K and 256K chunk size is higher than 4K(Page size).

• The best far memory chunk size is determined by the smaller one

between RDMA bandwidth and PCIe bandwidth.

(1) Performance Impact of Data Segment Splitting

The normalized performance of four workloads (BFS and Pagerank on dataset LJ and OR) with different chunk sizes.

21

Evaluation: Efficiency of the Back-end Design

• Data segment buffering brings task duration down by up to 19%.

• The duration reduction of BFS is stable while that of PageRank may

increase significantly on larger graph datasets.

(2) Performance Impact of Data Segment Buffering

22

Evaluation: Overall Performance

• Computation-centric algorithms such as Pagerank and Radii performs

better compared to the traversal-centric algorithms, such as BFS and WCC.

• Fargraph shows demonstrate the attractive scalability

• We can achieve 6.9× better performance compared to Original, and up to

8.3× performance compared to Fastswap.

The total performance comparison of 16 graph workloads with 80% far memory

23

Evaluation: Cost-Effectiveness of Memory Capacity

24

• The cost of each NVLink-based machine is almost 10-100x more expensive

than a RDMA-based machine.

• The cost-effectiveness of RDMA-based design can be better when the

requested extra memory capacity is in the range of 128-512G.

Conclusion

In this work, we explore the potential of graph processing on far memory.

• Capturing graph properties, the data segment grouping method can

achieve better far memory offloading effectiveness.

• Configuring the data transfer carefully, the data splitting and buffering

can improve performance of iterative graph execution model.

• Our design opens a door for more efficient big data analysis in the next-

generation cloud on disaggregated architecture.

• We will continue to improve our design for better scalability and higher

memory efficiency in the future work.

25

Thank You

Jing Wang

jing618@sjtu.edu.cn

