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Disaggregated architecture brings new opportunities to memory-consuming applications like graph 
processing. It allows one to outspread memory access pressure from local to far memory, providing an 
attractive alternative to disk-based processing. Although existing works on general-purpose far memory 
platforms show great potentials for application expansion, it is unclear how graph processing applications 
could benefit from disaggregated architecture, and how different optimization methods influence the 
overall performance.
In this paper, we take the first step to analyze the impact of graph processing workload on disaggregated 
architecture by extending the GridGraph framework on top of the RDMA-based far memory system. 
We propose Fargraph+, a system with parallel graph data offloading and far memory coordination 
strategy for enhancing efficiency of graph processing workload on RDMA-based far memory architecture. 
Specifically, Fargraph+ reduces the overall data movement through a well-crafted, graph-aware data 
segment offloading mechanism. In addition, we use optimal data segment splitting and asynchronous 
data buffering to achieve graph iteration-friendly far memory access. We further configure efficient 
parallelism-oriented control to accelerate performance of multi-threading processing on graph iterations 
while improving memory efficiency of far memory access by utilizing RDMA queue features. We show 
that Fargraph+ achieves near-oracle performance for typical in-local-memory graph processing systems. 
Fargraph+ shows up to 11.2× speedup compared to Fastswap, the state-of-the-art, general-purpose far 
memory platform.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Today’s various graph applications demand better memory per-
formance at different graph scales [22,51,53,44,41]. In the past, 
most graph applications can be processed by a single-node system 
given the relatively small size of the graph in existing in-memory 
graph frameworks [34,51,53]. Distributed graph frameworks are 
required only for very large-scale data analytic problems due to 
the communication overhead [43,55,29]. Nevertheless, as shown 
in Fig. 1-(a), many graph frameworks mainly focus on medium-
sized graphs (from 1GB to several hundreds of GB) [54,21,44]. 
Although current out-of-core graph computing frameworks could 
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handle medium-sized graphs with external storage like disk and 
SSD, they suffer significant performance degradation due to the I/O 
bottleneck.

In addition, to process workloads with various data inputs in 
the cloud, an important trend is to build disaggregated mem-
ory pools and enable far memory (i.e., remote main memory) ac-
cesses [32,24,9,6]. In this case, memory-consuming programs like 
graph applications can easily scale out by oversubscribing memory 
if the local server has limited capacity. Meanwhile, with high-
speed network protocols such as Remote Direct Memory Access 
(RDMA) [10] and Compute Express Link (CXL) [8], far memory ac-
cess can achieve near-DRAM performance, as shown in Fig. 1-(b). 
With appropriate memory management, better system utilization 
can be achieved. Such a far memory architecture has shown great 
promise in accommodating medium-sized graph processing appli-
cations. Consequently, it is expected to be a good complement to 
traditional single-node systems and distributed systems (detailed 
in Section 2).

https://doi.org/10.1016/j.jpdc.2023.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.02.015&domain=pdf
mailto:jing618@sjtu.edu.cn
mailto:lichao@cs.sjtu.edu.cn
mailto:liuyib@sjtu.edu.cn
mailto:sjtuwtl@sjtu.edu.cn
mailto:meijunyi@sjtu.edu.cn
mailto:luzhang@sjtu.edu.cn
mailto:wpybtw@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
https://doi.org/10.1016/j.jpdc.2023.02.015


J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 1. (a) The case of memory usage expansion and the raw graph size of existing graph processing frameworks. (b) The data transfer duration of different memory access 
scenarios.
Nevertheless, simply performing memory offloading of graph 
processing on far memory architecture may not provide the best 
performance. A straightforward approach of far memory out-
spreading is to replace the original swap space with the far mem-
ory space [13,20,2,18], without changing the strategy of page map-
ping and reordering in the original single-node graph framework. 
These works often limit local memory usage to trigger page faults 
and leverage high-speed network interfaces like RDMA to access 
far memory space. In other words, when the upper-layer appli-
cation framework intends to access the far memory, it passively 
leaves all the pressure of deciding thrown-out parts to the OS ker-
nel. Although this type of design is transparent to the application, 
it brings significant context switching overhead [13,2,12]. To re-
duce the above system overhead, recent studies attempt to build 
a user-level runtime to reduce kernel overhead [30,4]. However, 
they are not aware of the workload characteristics and they may 
miss performance optimization opportunities when running graph 
processing workload on far memory system (detailed in Section 3).

Furthermore, improving the parallelism level of graph pro-
cessing on RDMA-based far memory environment needs careful 
consideration. First, one should choose a proper number of as-
signed threads on graph programs. Simply adding threads to graph 
programs may not provide better performance speedup, which 
may cause performance degradation and memory space under-
utilization due to graph data properties [26,47,46]. Second, one 
should have detailed parallelism configurations on RDMA-based 
far memory access. To adapt to multi-thread computation, one 
may start abundant RDMA queue pairs corresponding to the num-
ber of virtual CPU cores. Multi-threaded communication in MPI is 
limited by serial data fetching based on RDMA transmission pat-
terns [14,35]. In this case, RDMA queues are not fully utilized so 
that bandwidth can be wasted [1].

The key opportunity of optimizing graph workload on far mem-
ory comes from two aspects: 1) the distinctive data segments and 
2) the iterative execution model. First, a graph processing program 
features a group of data segments with distinctive characteris-
tics [34,26,51]. On one hand, the size of different data segments 
may vary. Some data segments containing write-intensive vertices 
can be much smaller than others that maintain read-only edges. 
On the other hand, data segments in graph programs have differ-
ent memory access patterns. Some data segments are requested 
frequently while some are accessed only once. Therefore, we need 
to determine the appropriate data segments that should be moved 
out (to far memory). Second, graph applications generally have 
many iterations that update vertex values by continuously search-
ing graph data [22,34,54]. In each iteration, the program has to 
wait for the graph data to be fetched. Typically, the system fetches 
data by either propagating the current node value to neighbors 
through outgoing edges (push-based scheme) or gathering values 
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from neighbors through incoming edges (pull-based scheme). In 
the existing far memory environment, the above data fetching op-
erations may suffer frequent interruptions due to far memory ac-
cess. It is desirable to minimize far memory overhead for iterative 
graph workloads.

In this work, we ask this question: how can graph processing 
applications gain their best performance on the emerging far memory ar-
chitecture? To answer this question, we take the first step to adapt 
a general graph processing framework GridGraph [54] to far mem-
ory environment. In recent years, far memory research has been 
mainly focused on general-purpose design that can provide a bet-
ter trade-off between performance and resource utilization. In con-
trast, we explore the benefits of an application-specific far memory 
platform. Our technique intends to unleash the full potential of far-
memory-based graph processing from three primary perspectives: 
1) smart data segment offloading 2) adaptive far memory inter-
action and 3) efficient parallelism optimization. We introduce the 
way to identify data segments that are most suitable to be placed 
on the far memory. We also reconfigure the parallel RDMA-based 
far memory access to fit the graph workload better. We further 
control the multi-threading design of graph applications on the 
basis of saving RDMA-related resources (CPU core, memory space, 
RDMA queues, etc.) to achieve higher efficiency. We demonstrate 
the necessity of jointly managing application programs and far 
memory systems with a software/hardware co-design approach to 
achieve the best performance and efficiency.

Our contributions are listed as follows.

• We envision RDMA-based far memory as an attractive alter-
native to existing graph processing models. We propose Far-
graph+ based on Fargraph [38] and improve the parallelism 
performance and memory efficiency of graph processing on far 
memory.

• We design and optimize the parallelism of Fargraph+ based 
on parallel graph iteration control and optimized graph data 
structure for better performance of graph-aware data segment 
offloading and fetching.

• We further improve performance while reducing memory con-
sumption of Fargraph+ by optimizing RDMA queue configu-
ration for higher memory efficiency of iteration-friendly far 
memory interaction.

• We evaluate Fargraph+ in detail. We outperform the out-of-
core graph framework GridGraph by up to 8.2× and the state-
of-the-art far memory platform Fastswap by up to 11.2×. We 
also have up to 2.5x performance improvement compared with 
Fargraph.

The rest of this paper is organized as follows. Section 2 com-
pares different far memory architectures. Section 3 gives key ob-
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Fig. 2. Different architectures that can be leveraged for graph processing. (a) Kernel-level far memory with modified swap mechanism of OS. (b) User-level far memory 
communicated through RDMA.
servations to motivate this work. Section 4 presents the overview 
of Fargraph+. Our system mainly consists of three parts, including 
the front-end (graph-aware data segment offloading) in Section 5, 
the back-end (iteration-friendly far memory access) in Section 6
and the parallelism-oriented control in Section 7. Section 8 further 
introduces the implementation of Fargraph+. Section 9 introduces 
the evaluated experiments setup and Section 10 evaluates the per-
formance results of Fargraph+. Section 11 discusses related works, 
and finally, Section 12 concludes this paper.

2. Background

In this section, we introduce far memory and compare it with 
traditional systems in the context of graph processing.

2.1. Far memory and its current issues

Recently, there are two types of far memory architecture, 
fabric-based and NIC-based far memory architecture. Fabric-based 
far memory uses direct-connected far memory technologies, like 
NVLink [11] and CXL [8], and external memory devices can be 
accessed directly as alternative memory space of local memory 
[4,24]. They can achieve almost doubled bandwidth compared to 
RDMA-based far memory [6,28,9]. However, fabric-based far mem-
ory hardware device is often 10-100x more expensive due to the 
high cost of fabric-supported components. In addition, few open-
source corresponding OS the direct-connected protocols, which 
makes it difficult to evaluate and design.

NIC-based far memory architecture allows one to opportunis-
tically borrow memory resources from a remote node. NIC-based 
far memory technology greatly benefits from the development of 
high-speed networks like RDMA, making memory disaggregation 
more practical. As shown in Fig. 2, this typically requires RDMA 
to accelerate memory access over the high-performance network. 
With proper far memory management, one can balance resource 
allocation and save local memory for more critical tasks. Neverthe-
less, existing general-purpose far memory management schemes 
such as Infiniswap [13] and Fastswap [2] fail to fully unleash 
the potential of the far memory system. They cannot achieve full 
throughput due to a heavy reliance on the swapping mechanism 
of the OS when accessing far memory.

2.2. Kernel-level and user-level FM

We compare the kernel-level far memory system with OS swap 
kernel (the swap backend is RDMA) and the user-level far memory 
system with remote memory access on RDMA in Fig. 2. Replacing 
the swap backend directly with the RDMA kernel is a straight-
forward idea for far memory access. The Linux Swap mechanism 
involves two parts: the front-end (i.e., Frontswap [25]) and the 
back-end module. By inserting an RDMA-based swap module into 
Frontswap, the back-end module is redirected from the disk to 
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Fig. 3. Latency comparison of kernel-level far memory with modified swap mecha-
nism of OS (on the left) and user-level far memory communicated through RDMA 
(on the right).

RDMA. Although kernel-level far memory is transparent to appli-
cations by passively swapping cold pages to RDMA far memory, it 
suffers significant overhead. Since the swap space of the front-end 
is indispensable for RDMA-based swap, the kernel-level context 
switch cannot be avoided, which significantly increases the latency 
of each far memory operation. In addition, for kernel-level swap-
based far memory, one still needs to create local swap space on a 
disk as the backup for the RDMA back-end [2,13]. The far memory 
access procedure is often blocked due to the frequent disk access 
for RDMA failure backup.

Meanwhile, Fig. 3 shows the detailed execution delay of each 
step on kernel-level page access through the swap mechanism 
and user-level page fetching through RDMA protocol. User-level far 
memory has much lower remote memory access latency through 
RDMA operations than the kernel-level far memory with OS in-
volved. User-level RDMA-based far memory earns performance 
from the skip of sequential page fault and the locked data swap 
for each data fetch. In addition, CPU-free RDMA allows data over-
lapping of local computation and far memory communication. 
Furthermore, RDMA-based far memory gives scalable memory 
fetching and updating with different sizes of data chunks when 
transferring. Thus, user-level RDMA-based far memory access can 
achieve higher performance and have more flexible programming 
methods compared with swap-based far memory systems.

2.3. Comparison of different execution models

Both single-node and distributed computing have been used for 
graph processing. As a complement to the two models, far memory 
provides a new option for scaling out memory with high per-
formance. First, far memory provides a ready-to-use scheme for 
memory-intensive applications to oversubscribe memory, which 
outperforms disk-based I/O on a single node. Second, at the clus-
ter level, far memory shows promise in further improving resource 
utilization, especially for the SOTA schedulers [31,3]. To sum up, 
far memory execution model allows one to achieve better perfor-
mance per bit in a complex execution environment.
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Fig. 4. The measured duration of computation-intensive program Quicksort and memory-intensive graph programs (BFS, PageRank, BC) on growing far memory proportions.
Far Memory vs. Single-Node Systems. The traditional single-
node graph processing system, with all data loaded in local mem-
ory, often shows the best performance [34,26,53]. If the size of 
the graph is large, one can use disk storage as a memory exten-
sion [54,29,21], as shown in Fig. 2-(b). However, this may come 
with considerable performance overhead even with a fast SSD. In 
contrast, far memory offers an attractive alternative to disk-based 
memory extension, especially in the cloud environment [2,18]. Far 
memory access shows lower performance degradation compared 
with disk I/O. On the other hand, faced with fluctuating workload 
demand, far memory represents a more convenient way to over-
subscribe memory on demand.

Far Memory vs. Distributed Systems. Distributed computing is 
often used to process large graphs, with CPU and memory on each 
node working together, as shown in Fig. 2-(c). The key difference 
with far memory is that far memory focuses on data partition 
instead of task partition (which is common in the traditional dis-
tributed model). It is challenging to program directly due to the 
cost of both task and data partition. Traditional distributed model 
scales out the overall computing resource, while far memory sys-
tems aim to enhance the memory performance of each node. Far 
memory is well complementary to the existing distributed systems 
since it can further enlarge the available memory capacity of each 
node.

3. Design considerations

This section presents our key observations of running graph 
applications on far memory. This motivates us to design an opti-
mized strategy of offloading graph data efficiently in RDMA-based 
far memory environment.

3.1. Graph-aware opportunities

We analyze the impact of far memory usage on task dura-
tion in different scenarios. Specifically, we define far memory ratio
α as the ratio of far memory usage to all the memory usage of 
the application. The proportion of local part is (1 − α). We run 
a computation-intensive program Quicksort and memory-intensive 
graph programs including BFS, BC, and PageRank implemented in 
the graph processing framework GridGraph [54] on swap-based far 
memory platform Fastswap [2]. We use Cgroup to limit the local 
memory usage and leverage page swap to offload pages to RDMA-
based far memory. Fig. 4 shows our measurements of task duration 
with different values of far memory ratio. We change the far mem-
ory ratio by linearly increasing local memory limitations.

Fig. 4 shows that the duration of applications on Fastswap [2]
increases remarkably as far memory ratio grows. One reason for 
this is the kernel overhead, since the “sys time” representing the 
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in-system latency grows significantly in Fig. 4. The duration in-
crease of graph applications mainly comes from growing page 
faults when adding the far memory ratio. Since Fastswap is imple-
mented at the kernel level, each page fault and page fetching from 
far memory involve kernel operations so that the system time in-
creases quickly. Furthermore, swap-based far memory works like 
Fastswap [2] swap out the least accessed pages in the tail of LRU 
(least-recent-used) queues to far memory. However, as graph pro-
cessing typically has irregular data access patterns, swap-based 
far-memory systems may swap out frequently accessed pages and 
cause back-and-forth data movement. If we design far memory ac-
cess operations at the user level, we will skip most of the kernel 
overhead and improve performance.

Graph workloads show different duration trends in the con-
text of far memory, as shown in Fig. 4. For general tasks like 
Quicksort (Fig. 4-(1)), we observe a continuous duration increase. 
Differently, we observe that graph programs have an obvious per-
formance turning point in Fig. 4-(2),(3),(4). The relationship be-
tween far memory ratio and workload duration is quite similar 
in the three graph programs. Graph programs exhibit a duration 
curve that stays relatively flat when the far memory ratio is less 
than 0.6. The duration increases rapidly if the far memory usage 
is larger than the turning point. For example, the turning point is 
0.6 for BFS, 0.6 for BC, and 0.7 for PageRank in our experiment. 
The main reason for the turning point is that graph workloads 
have a distinguished set of hot pages with frequent memory ac-
cess. When far memory allocation touches the hot pages (when far 
memory percentage exceeds the turning point), the system’s per-
formance becomes sensitive to the far memory ratio. The reason is 
that graph processing features much more frequent memory access 
on vertex-related pages than edge-related pages, as stated later in 
Fig. 8. This motivates us to carefully offload a large number of cold 
parts (edge-related data) to far memory.

In summary, it is desirable to design a memory offloading strat-
egy of graph workload on far memory for better performance. 
First, user-level data offloading can reduce the overhead of page 
swap. Second, fine-grained partitioning of graph data and offload-
ing memory-consuming and cold data to far memory can further 
improve workload performance and system efficiency.

3.2. RDMA efficiency issue

Although MLNX_OFED (OpenFabrics Enterprise Distribution) en-
vironment provides RDMA atomic operations, it is not easy for 
developers to configure RDMA settings without specific skills [13,
2,12]. For example, we often transfer data with chunks of aligned 
size through network frames on RDMA. It is important to choose 
a proper chunk size due to the total performance impact. As Fig. 5
shows, we test the total duration when transferring different size 
of graphs (with 40 thousand to 40 million vertices and edges of 10 
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Fig. 5. The measured duration of transferring graph data with various transferring chunk size on RDMA. Sometimes it shows a “smile curve”.
Fig. 6. Performance of graph applications varies on different graph algorithms and 
datasets at different parallelism level.

times of vertex number on RMAT format [5,16]). Note that RMAT 
is the abbreviation of Recursive Matrix that naturally generates 
power-law degree distributions among graph vertices and RMAT 
graphs are often stored in edge list format. The results show that 
neither small (about 10K) nor large (500M) chunk size is the opti-
mal chunk size to achieve the best behavior.

Importantly, graph applications spend most of the time in data 
fetching and value updating. In each iteration, the graph algorithm 
fetches data from both local and far memory and processes them 
in the local region. Graph programs have a lot of iterations and 
the data to be fetched in the next iteration has dependencies on 
the previous iteration. Since the data transfer can be completely 
asynchronous between each RDMA channel, it often causes trouble 
when the newly arrived data overwrite the existing valid data dur-
ing one-sided RDMA operations. Carefully configuring data fetching 
and buffering during each iteration can help us cache the right 
data while avoiding communication delay.

In summary, it is essential to set RDMA-based far memory ac-
cess in the right way to fit the iterative graph execution model. 
First, configuring proper chunk size according to graph data is 
tricky to optimize data communication latency. Second, careful data 
buffering is important for correct data fetching in graph workloads.

3.3. Parallelism opportunities

Existing big data frameworks often improve the parallelism 
level of the applications by adding more threads. For example, 
one may use ready-to-use OpenMP, OpenMPI, Cilk, and Cilk+ to 
enable parallel computing automatically. We run classical graph 
algorithms of GridGraph [54] on real-world graphs with all data 
in memory, referring to Table 2 and 3. The overall runtime when 
assigning different numbers of threads is collected and the perfor-
mance speedup at different parallelism levels is shown in Fig. 6. 
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Graph applications behave a little differently from the other easy-
to-parallel applications. First, more threads may bring performance 
degradation. For example, when assigned 64 threads, the BFS acts 
worse than any other condition, as shown in Fig. 6-(a). Second, 
Graph programs often maintain an optimal range of thread num-
bers, and allocating thread numbers out of the optimal range may 
cause resource inefficiency. For example, the optimal range of BFS 
on Orkut dataset is 2 to 8, since 1 thread is less than 2× speedup 
(the dotted line in Fig. 6) and 16 threads can not bring per-
formance benefit. Multi-threaded graph traversal increases inter-
thread communication, which in turn undermines the benefits of 
parallelism in graph application. To avoid negative effects as well 
as save computing resources, we should choose the optimal range 
of thread numbers, which varies across different graph algorithms 
and datasets.

More importantly, the performance issue of parallelism can be 
worse when involving the RDMA environment. Although RDMA 
communication has been supported by the MPI standard [37] for 
several years, it is still difficult to access RDMA-based far memory 
efficiently [14,35]. First, multi-threaded communication in MPI is 
limited by serial data fetching based on RDMA transmission pat-
terns. For each thread, RDMA will build queues corresponding to 
each virtual CPU core to prepare for data communication. How-
ever, in this case, the content in each queue is isolated so that 
the local process must wait for all the requested data to arrive. To 
solve this problem, one can configure RDMA to share received data 
by shared receive queue (SRQ) in multi-queue environments. Sec-
ond, to adapt to multi-thread computation, one often starts abun-
dant RDMA queue pairs which consume non-negligible memory 
space [1]. By default, the system will build send queues, receive 
queues, complete queues to hold events, and data content chan-
nels to transfer data for each thread. Events can be discovered to 
drive the next operation and content corresponding to each event 
will be transferred.

In summary, there are opportunities for adapting graph pro-
cessing to parallel far memory access through RDMA. First, choos-
ing the optimal parallelism level can improve workload perfor-
mance with high resource efficiency. Second, an innovative config-
uration of resource sharing and allocation of RDMA queues can re-
duce abundant resource usage while supporting parallel far mem-
ory access.

4. Overview

The above analysis shows that smartly offloading graph work-
loads to the remote memory space is critical. In addition, effi-
ciently fetching data using RDMA with proper configurations is 
necessary to achieve better performance. We propose Fargraph+, 
an optimization strategy that allows graph programs to run on 
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Fig. 7. An overview of Fargraph+ platform.

far memory architecture in parallel efficiently. Fig. 7 provides an 
overview of Fargraph+ which mainly consists of three parts.

(1). Front-end. The graph-aware Front-end is the working set 
partition strategy that decides how to offload graph data segments 
by analyzing the memory access patterns of the graph. Fargraph+ 
front-end identifies and separates the working sets into two parts 
previously at the granularity of data segment. The front-end keeps 
hot data working sets in the local memory region and uses inter-
faces to fetch the other data working sets to remote regions with 
relative keys.

(2). Back-end. The RDMA-based Back-end designs the directive-
Like far memory interaction interfaces to build up efficient iteration-
friendly far memory access coordination on RDMA. Fargraph+ 
back-end implements the main optimization with the user-level 
RDMA operation. The back-end buffers the transmissions to sup-
port the one-side access and implement the overlap of data fetch-
ing and processing to reduce total latency.

(3). Controller. The parallelism-oriented Controller performs 
parallelism control of the graph data fetching and processing of the 
entire program, giving proper directions to the Front-end and Back-
end according to the outsider performance pressure and resource 
limitation. Fargraph+ controller selects proper thread numbers and 
memory usage limitations for the current applications according 
to the type of graph algorithms and datasets. The controller con-
figures shared-memory parallel programming in each iteration of 
the original graph programs. It also configures the parallel RDMA 
mechanism with queue resource sharing to achieve higher perfor-
mance and efficiency of far memory access.

All the designs are implemented in the two distinct procedures. 
1) the master process that resides on the active side (the client) 
and 2) the daemon process on the passive side (the far memory 
server). Our key strategies are mainly implemented on the active 
side, with assistance from the passive side. In Section 8 we intro-
duce our implementation.

5. The front-end: graph-aware data segment offloading

At the front-end, we first analyze the data segments of the 
graph program and classify them into several data segment groups 
(DS-Group). We then determine data segments that are preferable 
to be transferred to the remote side in advance for each particular 
DS-Group.

5.1. Graph data segment grouping

We investigate the data segments of stacks, queues, as well as 
graph-specific data items (e.g., the array of vertices) in the graph 
program. Data segment consists of a set of pages. In Fig. 8, we 
show the page access statistics when running BFS on a graph in 
LiveJournal format. We perform page address tracing and we show 
the allocated memory area corresponding to Parents of Vertices, 
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Fig. 8. We test the access frequency of each page in BFS. We show some distin-
guished data segments in the graph processing program.

Frontiers of Vertices, Edge lists, etc. As we can see, edge-related 
data segments are often accessed at limited times compared to 
vertex-related data segments, such as vertex values, parents, fron-
tiers, etc. Meanwhile, the number of traversed edges (memory 
read) can be several orders of magnitude greater than the num-
ber of vertices. Frequent value updating (memory write) always 
happens on a small group of vertices. It is undesirable if those 
frequently-accessed data segments are offloaded to the remote side 
(what the existing works often do). The above analysis shows that 
one can achieve better far memory offloading effectiveness at the 
data segment level by analyzing the graph workload.

In this work, we classify data segments into a few well-crafted 
groups i.e., DS-Groups, based on graph properties. Empirically, we 
divide data segments into four groups according to memory access 
behaviors. Fig. 9 shows our classification methodology. ① The DS-
Group 1 consists of memory offloading (short as MO) sensitive data 
segments in which data is often read and written in a highly fre-
quent manner, such as Vertex ids, attributes, frontiers, parents (a 
subset of vertices). ② The DS-Group 2 consists of MO less sensi-
tive data segments such as intermediate data variables. They are 
often written or generated temporarily during computing but do 
not need to be read from memory. ③ The DS-Group 3 contains MO 
less insensitive data segments with pages read many times and few 
rewritten, like edge blocks. The read-only feature, if used properly, 
is well-suited for the RDMA environment. ④ The DS-Group 4 (cold 
segments) is MO insensitive data segments, staying untouched for 
the majority of the time.

There are two ways to classify DS-groups. The first is offline 
analysis. One can calculate the average page access frequency of 
each data segment and treat the above-average data segments as 
the MO-sensitive data segments and the below-average ones as 
MO-insensitive data segments. The other way is to track the pages 
in each data segment online periodically, which is more accurate 
but time-consuming. One can set a time threshold T . If the page is 
accessed at time T , it will be labeled Read/Write-much; otherwise, 
it will be labeled Read/Write-few. Then we classify data segments 
into DS-groups according to the labels of these pages. In this work, 
we use offline profiling to identify the characteristics of data seg-
ments (DSs) and classified DSs to guide directive placement for 
simplicity and practicality.

5.2. Flexible data segments offloading

The DS Group provides a way for memory offloading. For exam-
ple, one can keep MO-sensitive data segments (DS-Groups 1 and 2) 
locally and move all the MO-insensitive data segments (DS-Groups 
3 and 4) to remote memory. However, as mentioned earlier, it is 
likely that the MO-insensitive data segments such as edge blocks 
are the majority among all the data segments. In this case, re-
stricting local memory usage and moving a huge amount of data 
segments of DS-Groups 3 and 4 to a remote memory server may 
cause nontrivial performance degradation.
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Fig. 9. The description and classification of data segments. We show the data parti-
tion method based on transferable data segments on the right part.

Fig. 10. The graph data structure of CSR, CSC, Grid Block and Edge List.

To cope with the above issue, we further define resistant data 
segment set and transferable data segment set (TDSS), which refers to 
a refined set of selected data segments in related DS-Groups that 
are preferable to be transferred to far memory. The data segments 
in TDSS are transferable data segments with transferable labels. 
The idea is enlightened by the concept of Writable Working Set[7]
which defines a set of pages that are critical to programs when 
processing live migration. We keep data segments in DS-Group 1 
and 2 as local resistant data segments that always stay in the lo-
cal memory. We further select data segments from MO-insensitive 
groups (DS-Groups 3 and 4) to the remote side, as indicated in 
Fig. 9.

We adopt a more flexible data partition approach based on 
TDSS. Our design allows one to keep part of the TDSS in local 
memory. We set priorities for the transferable data segments to 
decide the preferable offloading order of them according to the ra-
tio of local and remote data. In this way, we can achieve a flexible 
trade-off between local memory saving and far memory perfor-
mance in practice. Specifically, we give high priority to the read-
only data segments in the transferable data segments. The insight 
behind this is that most data segments in TDSS of a graph process-
ing workload are read-only (e.g., edge blocks). Fetching read-only 
data with a one-sided read allows us to minimize data transmis-
sion overhead. We can evict the data fetched from far memory as 
soon as the data is released to save local memory space.

5.3. Parallel data segments fetching

Proper graph data structure. Fetching graph data segments in 
the memory space in parallel can shorten the overall latency. How-
ever, random memory access in graph processing programs may 
block parallel processing. Fortunately, graph data are often prepro-
cessed from raw edge lists to CSR, CSC, or grid block structure in 
today’s computing framework [34,54]. Fig. 10 shows the general 
graph data structure of CSR, CSC, grid Block, and edge List. The pre-
processing procedure makes it easier to capture graph properties 
and to offload graph data in a more efficient and fine-grained man-
ner. Inspired by GridGraph [54], we can use ordered graph data so 
that more graph data can be accessed from registered physical con-
tiguous memory. The ordered grid block data structures gain more 
benefits from parallel processing on far memory system compared 
with unsorted CSR or CSC data structures.

Multi-thread data block fetching. Also, there are some tricks 
when assigning threads to programs in our system. The overall 
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Fig. 11. We split data segment into chunks. We use indexes to facilitate data seg-
ment fetching on far memory.

performance is greatly influenced by the number of graph blocks 
in the graph grid. The programs often perform when the thread 
number is an integer multiple of the graph partition number. 
Specifically, Executing processes the same as the number of CPU 
cores in a machine and spreading a process to a different CPU 
can be a better practice compared to assigning all the threads on 
the same processor. In addition, when working with Symmetric 
Multi-Processing (SMP) machines with NUMA support, binding the 
processes to specific CPU cores may provide better utilization of 
the CPU resource thus providing better performance. Thus in our 
system, we use taskset utility to set processor affinity for each pro-
cess to optimize overall latency.

6. The back-end: iteration-friendly far memory access

In the following, we further discuss how to improve far mem-
ory access efficiency given the above data segment offloading 
strategy based on RDMA during each graph iteration. The current 
RDMA one-sided read mechanism allows one to directly fetch data 
from remote memory without waiting for system handshaking. 
However, an appropriate configuration is essential for maximizing 
the benefits of graph processing on far memory. In our back-end, 
we break the transferred data into chunks with one-sided access 
within each iteration, and we overlap the computation and com-
munication in different iterations to reduce the total duration.

6.1. Data segment splitting

Appropriate data transfer is critical. RDMA-based far memory 
environment supports memory fetching and updating with differ-
ent sizes of data chunks. Each chunk is viewed as the basic unit of 
one-sided read/write. Since the size of each data segment is some-
how different, we transfer data based on a finer-grained unit: data 
chunk. As the left part of Fig. 11 shows, we transparently split 
each data segment into multiple chunks when writing to the far 
memory, and we merge these chunks into the data segments when 
fetching back. If the data segment size is smaller than the size of 
a chunk, it will not be divided.

We set indexes for remote data segments, as the right part of 
Fig. 11 shows. It reduces the traversal cost of finding the corre-
sponding data segments in far memory. For example, we use the 
vertex IDs of each grid block as the indexes of edges that are stored 
in the far memory. We can also use bitmap offsets to guide fast 
neighbor access accordingly. To ensure secure and isolated mem-
ory access, we send the local memory protection key (called lkey) 
with the indexes together and then fetch the remote key (rkey) 
and the corresponding data back.

6.2. Data segment buffering

Our second optimization overlaps data computation and com-
munication. We configure the system in such a way that it starts 
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Fig. 12. The iteration-friendly far memory access with overlapping.

to request the data for the next iteration when the current iter-
ation is still underway as Fig. 12 shows. We design buffers that 
support iteration pipeline overlap by hiding communication when 
fetching data segments, shown in Fig. 14. For grid or shard-like 
graph processing, it is easy to get the offsets of the next blocks ear-
lier than the next loading. It is feasible since the start and end of 
the data transmission are two separate control events with RDMA. 
Note that sometimes a one-sided read can be very fast, to the ex-
tent that it may overwrite the last data block. If there is no buffer, 
the data block supplied for the current iteration will be overwrit-
ten by the new operation before being processed. Thus, we also 
design send/receive buffer pairs for the local master and the re-
mote daemon process.

If we want to hide the communication overhead completely, the 
data transfer time needs to be shorter than the execution time for 
each iteration. In fact, for most graph iterations, data transmission 
is often much more time-consuming (e.g., 2x) than the process-
ing of the obtained data blocks from far memory (as shown in 
our experiment). As a result, the communication latency cannot be 
fully hidden and the time for each iteration is extended. Therefore, 
workloads with shorter transfer time and longer execution time 
often have better speedup than the others. In our experiment, the 
graph workloads have a smaller frontier size (i.e., shorter trans-
fer time) in their early-stage iterations, and therefore we observe 
notable performance improvement at the beginning of their execu-
tion.

6.3. Parallel RDMA configuration

Appropriate RDMA configurations are essential for maximiz-
ing the benefits of parallel graph processing on far memory. It 
is thus important to set proper data channels for the transferred 
data and instructions. An optimized operation is to separate con-
trol operations and data channel so that we can parallel the trans-
ferring of control-related operations and data read/write opera-
tions. In RDMA protocols, the transferred data through RDMA in-
cludes Small messages and Large contexts. Small messages guar-
antee the promotion of event-based RDMA communication, which 
includes control operations (create/destroy/query/modify), data in-
dexes, RDMA event states, read or write requests, etc. Oftentimes, 
they are very expensive because most of the time, they perform a 
context switch. Sometimes they allocate or free dynamic memory 
and sometimes they are involved in accessing the RDMA device. 
Sending these small messages in a special queue in Message Queue 
Pairs (QP), as shown in Fig. 13) will provide better latency since it 
eliminates the need for the RDMA device to perform an extra read 
(over the PCIe bus) in order to read the message payload. As for 
Large contexts, i.e. offloaded data on the far memory, they often 
provide large data chunks that can feed to local programs. Thus, 
we send them in the Work Request of the Context Queue Pairs (QP)
(as shown in Fig. 13) to gain faster far memory access.

In order to improve memory efficiency, we further compress 
the space by configuring RDMA queues on the basis of ensuring 
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Fig. 13. An example of parallel control on Fargraph+.

application performance. We carefully configure the queue length 
and queue number to reduce the memory resource usage of RDMA. 
Memory consumption of RDMA protocol mainly depends on the 
total memory size of data contexts in RDMA queues. To save mem-
ory space, it is better to reduce the size of the used queues to 
the minimum. In each thread, one should have at least one mes-
sage queue pair (send queue and receive queue) and one data 
context pair. However, when configuring the Queue Pair(QP) in 
multi-thread conditions, the size of queues grows rapidly. Instead 
of having a separate receive queue and posting many receive re-
quests for every queue pair, we set Shared Receive Queues (SRQ) 
to save the total number of outstanding receive requests and re-
duce the total consumed memory, as shown in Fig. 13. Second, 
setting message queues (which is stated above) can reduce lo-
cal memory usage since small messages require smaller buffers. 
As graph workloads are memory-intensive, we rarely have perfor-
mance down gradation due to cutting queues while keeping the 
RDMA device busy. We will further show the effectiveness of our 
design in our evaluation.

7. The parallelism-oriented control

Inspired by CongraPlus system which develops a NUMA-aware 
scheduler [27], we designed a multi-threaded controller with two 
phases: offline collection phase and online allocation phase. In the 
offline data collection phase, the commonly used graph datasets and 
graph algorithms are synthesized and run with a different num-
ber of threads to obtain the information important for scheduling. 
We run the synthesis of graph datasets and algorithms to collect 
run-time information. We build offline tables of execution time, 
threads, far memory ratio, dataset partition number, queue length, 
etc. In the online resource allocation phase, the controller config-
ures the resource limitations according to the available remaining 
resource and the offline table to achieve optimal efficiency (best 
performance on the limited resource) for the program.

We give an example of the parallelism control procedure of Far-
graph+, as shown in Fig. 13. We have implemented the optimized 
configuration of parallel iteration, parallel RDMA, chunk size and 
queue length in the program. We further allocate proper thread 
and far memory resource to the program according to the offline 
table. To perform better on NUMA architecture, we assign differ-
ent tasks to different sockets to get balanced loads. By binding the 
execution of a specific task to a socket, the Linux first-touch mech-
anism can be utilized to avoid cross-node memory access.

Thread allocation. In the thread allocation module, we prefer 
to give more cores to tasks that are can achieve better overall la-
tency in multi-threaded situations. Performance improvement is 
collected and calculated in the offline table. We measure the re-
duction of overall runtime when assigning one more core and 
assign the core to the task with the largest time reduction. The 
allocation will be repeated until a conflict arises or multi-core no 
longer brings performance gains. In this work, we reduce conflict 
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drawbacks by stopping launching a task without minimum avail-
able resources in the system. If there is no free CPU core or the 
free local memory cannot meet the turning point local memory 
requirements of the current task, it will not be launched.

Far memory allocation. We adjust the far memory ratio of each 
arrived program according to the resource limitation of the cur-
rent system. We will offload the insensitive graph data segments 
directly according to the memory resource limitation. As discussed 
in 3.1, there is a runtime turning point in the graph program as the 
far memory ratio increases. In order to make more efficient use of 
local memory, we set the far memory ratio of all the concurrently 
running graph programs to the ratio corresponding to the perfor-
mance turning point. In this case, the local memory of each task 
can be squeezed as much as possible so that the server can main-
tain more graph programs to achieve higher task throughput and 
better overall memory efficiency.

8. Directive-like implementation

We implement Fargraph+ with directive-like instructions, which 
slightly modifies the original graph framework. All the far memory 
operations with optimized configuration through RDMA are encap-
sulated into concise function calls with necessary parameters and 
thread constraints. We insert our far memory access interfaces into 
the original graph frameworks to manage the selected data seg-
ments with parallel iterations.

8.1. Interfaces design

Our far memory access interfaces are described as follows. We 
mainly provide six interfaces for Fargraph+. Add_transferable_flag
makes data segment offloading decisions for the whole program. 
It adds transferable flags to each data segment in a data segments 
list (DS_list) based on the given far memory ratio (detailed in 
Section 3.1). Build_connection() starts the connection by checking 
the IP address and the transmission port. It registers the mem-
ory regions on the local node with the given memory_region_size. 
Far_write_start() triggers the memory registration on the passive 
side and then starts writing data to far memory. Far_write_com-
plete() returns once this round of sending data is accomplished. 
It obtains the indexes of data segments on the far memory. The 
lkey and rkey represent the protection key for the local and remote 
memory regions, respectively. They are transferred along with the 
data. Far_read_start() starts a one-sided read of each data segment 
and implies the beginning time of data segment fetching. To coop-
erate with multi-thread control, the thread ID is passing as a pa-
rameter and communicates with each RDMA data queue provided 
in each thread. Far_read_complete() returns the rkey and index of 
the fetched data when the data transmission finishes. Our chunk 
splitting and merging operations are embedded in the far memory 
read and write functions.

Interfaces Insertion: The key point of the modification is the 
location of the inserting interface. The pseudocode in Algorithm 1
demonstrates all the interface locations in the original program. 
The Far_write_start() and Far_write_complete() of each data seg-
ment are in the preprocessing stage. The first Far_read_start() is 
placed right before the beginning of all the iterations. Then, the 
later Far_read_start() are placed as soon as getting the next neigh-
bors in each iteration, as shown in Fig. 12. For example, we choose 
to start transferring the next data segment (DS_Next) once the cur-
rent data segment (DS_Current) is freed. This allows one to overlap 
the processing of the current data segment while the next data 
segment transfers. Far_read_complete() of each data segment is in 
the place where the original data segments are called. This ensures 
the correction of the transferred data segments. After insertion, the 
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Algorithm 1 Program Adjustment with Fargraph+ Interfaces.
1: Add_transferable_flag(DS_list, far_ratio, ...);
2: Build_connection(IP,port,memory_region_size, ...);
3: //send all TDSS to far memory when preparation
4: #pragma omp parallel num_threads(parallelism)
5: for each DS_i in transferable_DS_list do
6: Far_write_start(trans_flag, DS_i, index, lkey, threadID, ...);
7: end for
8: Far_write_complete(DS_indexes, rkey, threadID, ...);
9: ...continue... //waiting for data segments calls

10: //start read far DS_Current in another process;
11: Far_read_start(DS_Current, index, rkey, threadID, ...);
12: while (in each processing loop) do
13: ...continue... //original data process
14: #pragma omp parallel num_threads(parallelism)
15: while calling DS_Current do
16: if DS_Current is prepared then
17: Far_read_complete(DS_Current,index,threadID, ...);
18: end if
19: end while
20: // start receive the next DS;
21: Far_read_start(DS_Next, index, rkey, threadID, ...)
22: ...continue...//original data process
23: if DS_Current finishes occupying then
24: Free DS_Current in local RAM;
25: end if
26: end while

Fig. 14. The detailed workflow of data segment pre-transferring and far memory 
coordination on Fargraph+.

program can use far memory automatically with all the optimiza-
tion of Fargraph+.

The above modification can further apply to both out-of-core 
and in-memory graph frameworks. Out-of-core frameworks pro-
cess part of the data from storage like disks, while in-memory 
frameworks process all the raw data in memory. For out-of-core 
frameworks, one can load and stream batches of edge blocks from 
far memory when processing large graphs by replacing disk access 
(disk I/O) or local memory access (buffer I/O) with our APIs. For in-
memory frameworks, we load the entire graph data into the main 
memory before preprocessing, and we can replace the buffer copy 
operations with our APIs. One can extend our design to support 
new runtimes and protocols of specific devices like NVLink [11]
and CXL fabrics [8]. We leave the extension of supporting more 
applications and more far memory backends to future work.

8.2. Fargraph+ workflow

The workflow of Fargraph+ is shown in Fig. 14.
(1). Pre-processing. We start by configuring the thread num-

ber of graph programs in the front-end with customed parallelism. 
RDMA queues in the back-end. To start far memory access initial-
ization, we create RDMA queues and event channels to receive key 
notifications such as address-resolved, route-resolved, and port-
binding, etc. Afterward, the system needs to register memory re-
gions and put them into RDMA’s Protect Domains (PD) for memory 
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Table 1
Evaluated System Management Strategies.

Schemes Applications Mem. 
Limit.

Par. 
Limit.

Exe. Environment

Original GridGraph Yes No Disk
Fastswap GridGraph Yes No kernel-level FM
Fargraph Modified GridGraph No No user-level FM
Fargraph+ Modified GridGraph Yes Yes user-level FM
Oracle Modified GridGraph No No Local memory

authorization. We also build RDMA queues (including shared send, 
receive, and complete queues) on both the active and passive sides. 
We decide the transferable data segments and add labels and in-
dexes to them asynchronously. We then pre-transfer the decided 
data segments to far memory on the passive server with RDMA 
write (①, ② in Fig. 14) and obtain their far memory keys.

(2). Far memory coordination. Fig. 14 shows the general pro-
cedure of Fargraph+ in each iteration. There are two parts of far 
memory coordination. i) DS-based data fetching. We start to fetch 
the next DS once the frontier data of the current iteration is ready. 
We transfer the indexes of the required DSs to far memory as a 
parameter of function Far_read_start(). Note that we fetch graph 
data in parallel graph iterations with multiple threads, we use 
shared receive queues for fetching remote data segments thread 
each thread. We fetch corresponding edge blocks (i.e. DSs) in order 
and start the next until all the current concurrent data arrive. ii) 
Chunk-based RDMA transfer. When the local region requests data, 
we use RDMA one-sided read to fetch them. We divide the original 
data segments into multiple chunks using RDMA SGE_LIST. We de-
vise a buffer to pre-fetch the transferred data asynchronously (③ in 
Fig. 14). We also use srq_post_receive to continuously receive data 
read from far memory through the shared receive queue and write 
the data into buffers. Meanwhile, we directly copy the received 
data from the buffer to the local region if the program requests 
the data (④ in Fig. 14).

9. Experimental setup

We introduce the experimental setup design which supports 
the design choices.

9.1. Hardware environment

We build our far memory platform based on two servers: a 
client node and a memory node. On the client node, we use 
Cgroup2 to limit the local memory usage of each process if we 
need to trigger far memory access. We use OpenMP interfaces to 
parallel our graph programs. We also use pthread to manage the 
threads allocation and communication in the local process. Each 
node is provisioned with two 16-core Xeon CPUs, 128 GB of mem-
ory, and a dual-port Mellanox ConnectX-5 RDMA NIC supporting 
up to 70∼90Gb/s Ethernet. The RDMA driver is version 5.6.0 of 
the OFED kernel, and it uses RoCE (RDMA over Converged Ether-
net) protocol.

9.2. Evaluated system strategies

We consider the following strategies as Table 1 shows. 1) Orig-
inal. This scheme adopts the conventional out-of-core processing 
model of GridGraph on a single server. It leverages the disk to 
process medium-sized graphs. 2) Fastswap. It is a state-of-the-art, 
open-source kernel-level far memory platform which outperforms 
many previous works [13,20]. It is an RDMA-based far memory 
platform with swap kernel and local disk involved [2]. We consider 
it as a key baseline strategy in this work. 3) Fargraph. This scheme 
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Table 2
Evaluated Graph Datasets.

Dataset |V | |E| Edge Size Mem. Footprint

Live Journal (LJ) 4,848 K 69 M 1.1 GB 2.4 GB
Orkut (OR) 3,072 K 117 M 1.8 GB 3.9 GB
Twitter7 (TW) 17 M 477 M 26.3 GB 47.7 GB
Friendster (FR) 65 M 1806 M 32.7 GB 60.4 GB
RMAT-1T(RM1) 100M 1T 76.2GB 202.2GB
RMAT-5T(RM5) 100M 5T 152.4GB 354.4GB

Table 3
Evaluated Graph Processing Algorithms.

Algorithms Description Mem. Access Feature

BFS breadth-first search random I/O
WCC connected components random I/O
PR web page ranking random I/O and sequential I/O
Radii graph radii estimation random I/O and sequential I/O

uses all the optimizations that we propose without parallel config-
uration and resource optimization. 4) Fargraph+. This scheme uses 
all the optimizations that we propose. 5) Oracle. This is the ideal 
design case of far memory, which keeps all the data in the local 
main memory (best performance).

9.3. Evaluated graph workloads

We evaluate 6 graph datasets together with 4 representative 
graph algorithms in our experiment. The datasets contain 4 real-
world graphs including LiveJournal (LJ), Orkut (OR), Twitter7 (TW), 
Friendster (FR), and 2 generated large graphs including RMAT 
graph with 100 trillion edges (RM1) and RMAT graph with 500 
trillion edges (RM5) generated by PaRMAT tool [16]. Note that 
the memory footprint of RM1 and RM5 exceeds the size of lo-
cal memory in our evaluation. More details are given in Table 2. 
The evaluated graph algorithms are shown in Table 3. Specifically, 
BFS and WCC are traversal-centric algorithms, while PageRank and 
Radii are computation-centric with heavy value computation in 
each iteration. We run 20 iterations for PageRank and find con-
nected components in unweighted graphs in WCC.

We perform graph processing on the GridGraph [54] frame-
work. GridGraph represents one of the state-of-the-art graph 
frameworks and it is popular for its powerful grid-based data 
structure. Another reason for choosing GridGraph is that it pro-
vides both buffer I/O version (in the memory) and direct I/O 
version (in the storage); this feature allows us to evaluate both 
kernel-level far memory (required by Fastswap) and user-level far 
memory (required by Fargraph+). Note that the performance com-
parison between disk-based and RDMA-based works is almost one 
order of magnitude, and one can refer to the speedup of far mem-
ory over disk I/O in previous works [13,20,2].

10. Results

This section presents detailed experiment results that further 
support our design choices and demonstrate the efficiency of 
Fargraph+. We compare our design with the classic single-node 
graph processing framework GridGraph [54] and the state-of-the-
art RDMA-based far memory engine Fastswap [2]. We also give the 
performance breakdown to show the optimization on Fargraph+.

10.1. Overall performance

We first present the overall optimization effectiveness of Far-
graph+ across 24 workloads. Fig. 15 compares Fargraph+ with all 
the other evaluated schemes.
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Fig. 15. The total performance comparison of baselines by testing 24 graph workloads on Fargraph+. We normalized the Latency of each baseline by dividing the latency of 
our system. The values of the bars refer to the speedup of our work compared with all the baselines.

Fig. 16. We show the performance comparison of 24 graph workloads with multiple threads on Fargraph+. No-P represents single-thread allocation with no parallelism. Full-P 
refers to starting as many threads as possible (32 threads in our evaluation) on each CPU core with full parallelism. Opt-P is our method with optimal thread allocation that 
can achieve the best performance.
For many datasets, computation-centric algorithms like PageR-
ank and Radii show relatively higher performance improvement 
compared to traversal-centric algorithms, such as BFS and WCC. 
It is mainly because the data access patterns of BFS and WCC are 
more irregular than PageRank and Radii. Another reason is that 
the I/O overhead cannot be fully hidden by computation in graph 
iterations. The parallelism potential can be more obvious when 
processing computation-centric algorithms on larger graphs such 
as PageRank and Radii on RM1 and RM5, which has more chance 
to hide latency in computing iterations.

The results also demonstrate the attractive scalability of Far-
graph+. In most cases, Fargraph+ shows better performance im-
provement as the graph size grows. For example, BFS, WCC, and 
PageRank all yield an increasing speedup on datasets OR, TW, and 
FR. Radii has a different behavior mainly because the estimation of 
graph radius requires much more traversal time as the graph size 
grows. On larger graph datasets RM1 and RM5 which can not be 
fit into local memory, we compare the baselines including Orig-
inal, Fargraph and Fargraph+. Fastswap has limited available far 
memory size and cannot handle them. In the results, we observe 
remarkable performance speedup than baselines and the paral-
lel potential on larger datasets. We show significant performance 
speedups, such as 9.1× of BFS and 11.1× of PageRank on RM5. 
The experimental results show that greater benefits can be gained 
from parallelism on larger datasets. For example, Fargraph+ shows 
more speedup than Fargraph on larger datasets such as 3.2× of 
PageRank on RM5 and 2.7× of Radii on RM1.

Overall, the results show that Fargraph+ is more efficient and 
is closer to an oracle design compared with Fastswap. We can 
achieve up to 9.2× better performance compared to Original, and 
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up to 11.2× performance compared to Fastswap. Compared with 
Fargraph, we also achieve up to 3.2x speedup due to the proper 
design of parallel data fetching and optimized RDMA queue con-
figuration, especially on larger datasets. Note that our evaluation 
is conservative due to the use of a medium-sized dataset (instead 
of hundreds of GB). It is more challenging for Fargraph+ to make 
memory offloading decisions and hide communication latency with 
smaller datasets. Our design approach can be applied to many 
other graph frameworks and we expect it to show better perfor-
mance on larger graphs.

10.2. Performance of parallelism control

We test the parallelism control performance of the 24 work-
loads on Fargraph+ system by offloading all edge data to far mem-
ory. We assign them with different threads to show the speedup 
of parallel design on Fargraph+. We test programs with 1 to 64 
threads separately and analyze the results. We list the overall la-
tency of three conditions in Fig. 16, including 1 thread with no 
parallelism (short as No-P), thread number equal to CPU cores with 
Full parallelism (short as Full-P), and the optimized thread num-
ber that can achieve the best performance in Fargraph+ system 
(short as Opt-P). To better present the parallelism speedup, we 
normalized the overall latency with the least latency (i.e. Opt-P). 
We show a different range of performance speedup over the sub-
optimal conditions. Overall, our parallelism control can have the 
best performance and higher efficiency by saving CPU and mem-
ory resources.

Graph algorithms show different latency trends on various lev-
els of parallelism. In our evaluation, computation-centric algo-



J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 17. The optimal parallelism ranges and the median values of graph workloads.

Fig. 18. The duration of BFS on dataset LJ and FR on far memory platform Fargraph+ and Fastswap under rising far memory ratios.
rithms like PageRank and Radii show relatively higher performance 
improvement on higher parallelism compared to the traversal-
centric algorithms, such as BFS and WCC. For example, the best 
speedup of BFS and WCC is 4.9x and 4.6x on RM5 dataset in 
Fig. 16-(a) and (b), while the best speedup of PageRank and Radii 
is 7.1x and 8.2x on FR and TW in Fig. 16-(c) and (d), respectively. 
Furthermore, WCC, PageRank, and Radii have a larger thread num-
ber of best performance. This infers that computation-centric algo-
rithms can have more data parallelism opportunities when adding 
parallel design into the system.

Graph programs on large graphs can benefit more from par-
allelism design on larger datasets. Larger datasets like TW and 
RM5 show up to 8.2x and 8.1x performance speedup when us-
ing more threads, as shown in Fig. 16-(d). We present the optimal 
thread numbers range of each graph workload that can achieve 
over 2 times of speedup without taking up additional threads, 
as shown in Fig. 17. The results show that larger datasets prefer 
more threads. For example, WCC achieves the best performance 
with 8 threads on LJ, OR, TW, and 16 threads on FR. The rea-
son is that larger datasets have more iterations of data fetching, 
so they can have higher parallelism when data is fetched from far 
memory in parallel. In addition, we show that computation-centric 
algorithms can benefit more from larger parallelism due to hiding 
more transfer latency in each iteration. For instance, PageRank and 
Radii show better performance with at least 16 threads on each 
dataset. Overall, our parallelism design shows obvious scalability 
on graph applications and is friendly to large datasets.

10.3. Performance of the front-end

Efficiency of Data Offloading Design. We start by evaluating 
the performance of Fargraph+’s front-end optimization, namely 
the graph-aware data segment offloading. We show that work-
load awareness allows Fargraph+ to achieve better performance. In 
Fig. 18 we compare Fastswap and Fargraph+ on BFS under differ-
ent far memory ratios (the ratio of far memory usage and total 
memory demand).
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Fig. 19. The normalized performance of eight workloads (BFS and PageRank on LJ, 
OR, TW, FR datasets) with different chunk sizes, including large size Chunks (Large-
CS) Small size chunks (Small-CS) and optimal chunk size (Opt-CS) which get best 
performance.

As shown in Figs. 18-(a) and (b), Fargraph+ shows lower task 
duration compared to Fastswap, especially when the far memory 
ratio is large. We observe that the duration of Fastswap rapidly in-
creases if the far memory ratio is larger than 0.8. This is because 
the system starts to move MO-sensitive data segments to far mem-
ory. When the far memory ratio reaches 0.95, Fastswap could be 
too slow to meet user expectations and it cannot finish even af-
ter 10 minutes of execution on BFS-LJ. In contrast, Fargraph+ still 
maintains acceptable performance. The reason is that Fargraph+ 
uses a tailored data segment partition strategy and it can make 
the best use of far memory to process a larger amount of graph 
data.

Performance Impact of Data Segment Splitting. Since Far-
graph+ relies on data segment splitting (detailed in Section 6) to 
improve far memory efficiency, determining the appropriate chunk 
size is critical. In Fig. 19, we plot the smile-like duration curves 
of 4 workloads (BFS and PageRank on LJ and OR). The results are 
normalized to the duration under 4K chunk size. In particular, the 
duration under 4K chunk size is higher than the duration under 
32K and 256K chunk size. This indicates that the 4K-page-based far 
memory access design (e.g., Fastswap) is not efficient enough. The 
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Fig. 20. The duration of graph algorithms on dataset FR with different partitions.
Table 4
The duration comparison of Fargraph+ data buffering.

Duration (s) BFS

LJ OR TW FR

Schemes Fargraph+ w/o buffering 3.45 4.53 75.61 107.40
Fargraph+ buffering 2.97 3.93 63.23 94.02

Duration Absolute value ↓ 0.48 ↓ 0.6 ↓ 12.38 ↓ 23.38
reduction Relative value 14% 13% 12% 13%

PageRank

Schemes Fargraph+ w/o buffering 7.44 26.80 153.19 233.63
Fargraph+ buffering 6.92 23.52 123.70 200.85

Duration Absolute value ↓ 0.52 ↓ 3.28 ↓ 29.49 ↓ 32.78
reduction Relative value 7% 12% 19% 14%

reason for the smile-like curve is that the best far memory chunk 
size is not only decided by graph iterations but also relevant to 
the smaller one between RDMA bandwidth and PCIe bandwidth. 
If RDMA transmission bandwidth (i.e., the frame size) cannot fill 
the PCIe channel, a larger chunk size means better performance. In 
contrast, if the RDMA bandwidth is too large, the total bandwidth 
can be limited by the PCIe channel.

With PCI Express 3.0 (16 GB/s) and 9.6KB RDMA frame with 
dual-port on our two-CPU mainboard, the full-bandwidth chunk 
size is around (16 × 9.6 × 2)KB =307.2KB. Note that the optimal 
data chunk size varies due to different hardware resource config-
urations and different program behaviors. Our experiment results 
show that we can obtain the best performance at around 256KB 
for most of the workloads (Only BFS-LJ favors 32K chunk size) 
evaluated in this study. Therefore, we use 256KB in all of our ex-
periments.

Furthermore, graph partitions affect the overall performance, as 
Fig. 20 shows. We test the latency of each workload on FR dataset 
with 8, 16 and 32 partitions over the best chunk size. The largest 
partitions may not have more benefits from higher parallelism. We 
flag the best speedup of applications on each partition number 
and we can configure the best thread number when using different 
data partitions. In most cases, BFS and PageRank graph programs 
with larger partitions gain more performance speedup on larger 
parallelism, while WCC and Radii graph programs with more par-
titions perform better when limiting the parallelism.

10.4. Performance of the back-end

Performance Impact of Data Segment Buffering. We evaluate 
the performance impact of data segment buffering which enables 
efficient iteration overlap. We show the results of two representa-
tive algorithms, namely, BFS and PageRank. We measure the dura-
tion of the non-overlapped version (Fargraph+ w/o buffering) and 
the overlapped version (e.g., Fargraph+). In Table 4, we show the 
results of BFS and PageRank on 4 datasets. As we can see, data 
segment buffering brings task duration down by up to 19%.
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Fig. 21. The memory size comparison of original and optimized RDMA queue con-
figuration.

In general, there is a striking difference between PageRank and 
BFS if we look at the duration reduction effect of data segment 
buffering. In Table 4, we show the absolute and relative duration 
reduction. The relative duration reduction refers to the ratio be-
tween duration reduction and the original duration. It is evident 
that the reduced duration of PageRank is larger than BFS. We also 
observe that the relative duration reduction of BFS is relatively sta-
ble while that of PageRank may increase significantly under larger 
graph datasets.

Efficiency of RDMA Queue Optimization. We further evalu-
ate the memory consumption reduction of the optimized RDMA 
queue configuration by comparing Fargragh+ and Fargraph+ with-
out queue optimization. The results are shown in Figs. 21-(a) and 
(b). The longer the queue length, the more events and buffered 
context spaces are left in local memory for data transferring. Thus, 
we measure the memory capacity savings brought by the opti-
mization of queue configuration in the cases of multiple threads 
with different queue lengths. Figs. 21-(a) and (b) shows the results 
of memory occupation when queue length is 10 and 40 on differ-
ent parallelism level.

Overall, the results show that Fargraph+ can compress up to 
50% space compared with Fargraph+ on the basis of ensuring ap-
plication performance. One can have more memory saving when 
using more threads. The reason is that we use shared receive 
queues to share events from each thread. Memory space saving 
is more obvious when using a longer queue length, saving up to 
23% in the queue length of 10 and up to 50% in the queue length 
of 40 compared to the results in Figs. 21-(a) and (b). This is due to 
the design of message and context queue pair reconfiguration and 
we can save memory space corresponding to message events.

11. Related work

Disaggregated Memory Architectures. Composable Disaggre-
gated Infrastructure (CDI) [23,19] gains considerable attention in 
recent years. It is proposed to break the fixed hardware compo-
nents of monolithic servers into disaggregated, network-attached 
components. For example, LegoOS [32] introduces modular system 
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implementation for hardware disaggregation. String-finger [24]
builds a large memory pool with thousands of memory nodes and 
tens of CPUs. There are several works [20,2,36] focusing on ex-
tending their local main memory to a special memory node with 
large DRAMs or NVMs in the rack. Differently, Fargraph+ provides 
an application-aware far memory optimization scheme, which is 
more efficient than general-purpose far memory platforms.

System Support for Graph Processing. In general, there are 
three types of graph processing frameworks. 1) In-memory graph 
frameworks, such as Ligra [34], Cagra [51], GraphIt [53], and etc. 
In memory frameworks process graphs after all the source data are 
loaded into main memory [39]. 2) Out-of-core frameworks, such as 
GridGraph [54], Mosaic [21], HUSGraph [44] process large graphs 
with limited main memory and a large-capacity disk. Works with 
out-of-core execution patterns [41,33] load each graph block into 
the memory and process them streamingly. 3) Distributed frame-
works, such as GraM [43], Gemini [55], and Chaos [29], divide huge 
graphs into several parts and process them with Map-Reduce-style 
schemes. All of these works concentrate on the execution instead 
of data partition, especially in the context of remote memory ac-
cess. Fargraph+ fills a critical void by enabling efficient graph pro-
cessing on RDMA-based far memory. It can be extended to further 
support emerging applications like graph-structured cloud-native 
applications [48,42,15,50] and graph-based ML/AI applications [40].

Parallel Graph Processing Management. Parallel graph pro-
cessing frameworks have different types of parallelism manage-
ment methods when serving requests in a multi-user environ-
ment. Congra [26] proposes a scheduling method of multiple 
graph queries by collecting the memory bandwidth consumption 
characteristics on the optimal CPU cores. Kim et al. [17] de-
vised methods for enabling efficient processing of multiple graph 
queries using MapReduce. Xue et al. [47,46] supports concur-
rent graph processing queries and proposes a graph structure 
sharing mechanism to avoid memory storage waste. Cgraph [52]
designs a correlations-aware execution model, together with a 
core subgraph-based scheduling algorithm, to efficiently share the 
graph structure data in cache/memory and their accesses. GC-
graph [45] shares the I/O access and processing of graph data 
among the CGP jobs and adaptively schedules the loading of graph 
data, which efficiently overcomes the I/O challenges in prior works. 
Uni-address [1] demonstrated a new thread management scheme 
which enables us to implement RDMA-based work stealing and 
reduces virtual memory usage of thread migration. Fargraph+ ex-
plores multi-threading effects in far memory environment and im-
proves the efficiency of parallel graph processing.

RDMA-based Far Memory Acceleration. With kernel-bypass 
and fast-messaging features, the RDMA card has been widely used 
for speeding up remote memory access. For example, general-
purpose far memory is drawing increasing attention in recent years. 
Infiniswap [13] proposes transparent remote memory paging based 
on RDMA. It is also feasible for a virtual machine to access not 
only its own isolated memory area but also DRAM-based ex-
ternal memory and RDMA-based far memory [20]. Since graph 
computing has irregular memory access patterns, general-purpose 
far memory acceleration schemes cannot achieve the best perfor-
mance. Consequently, designing application-specific far memory is 
also gaining popularity. For example, GraM [43] processes graphs 
with distributed computing, using RDMA to pass messages. FAM-
graph [49] offloads all graph edges to the remote disaggregated 
memory to efficiently tier data between local and remote mem-
ory. Different from existing works, Fargraph+ manages transferable 
data segments for graph workloads and optimizes graph process-
ing with tailored RDMA control.
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12. Conclusion and discussion

In this paper, we explore graph processing on emerging far 
memory architecture. We show that there are several challenges 
and opportunities in deploying graph workloads on far memory. 
We propose Fargraph+, an optimization strategy that allows one 
to run graph applications on far memory in parallel efficiently. 
The key novelty of Fargraph+ is three-folded, including the smart 
graph-aware data segment offloading, the adaptive far memory in-
teraction and the efficient parallelism optimization. We implement 
Fargraph+ based on the GridGraph framework and conduct a case 
study to demonstrate its effectiveness. We show that Fargraph+ can 
achieve up to 9.2× and 11.2× speedup compared to conventional 
out-of-core graph processing framework and the state-of-the-art 
general-purpose far memory platform, respectively. We expect that 
our design will open a door for more efficient graph processing in 
the next-generation cloud on disaggregated architecture.
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