
Journal of Parallel and Distributed Computing 177 (2023) 144–159

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Fargraph+: Excavating the parallelism of graph processing workload on

RDMA-based far memory system

Jing Wang a, Chao Li a,b,∗, Yibo Liu a, Taolei Wang a, Junyi Mei a, Lu Zhang a, Pengyu Wang a,
Minyi Guo a,b

a Shanghai Jiao Tong University, Shanghai, China
b Shanghai Qi Zhi Institute, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 August 2022
Received in revised form 7 December 2022
Accepted 24 February 2023
Available online 10 March 2023

Keywords:
Far memory
Graph processing
RDMA

Disaggregated architecture brings new opportunities to memory-consuming applications like graph
processing. It allows one to outspread memory access pressure from local to far memory, providing an
attractive alternative to disk-based processing. Although existing works on general-purpose far memory
platforms show great potentials for application expansion, it is unclear how graph processing applications
could benefit from disaggregated architecture, and how different optimization methods influence the
overall performance.
In this paper, we take the first step to analyze the impact of graph processing workload on disaggregated
architecture by extending the GridGraph framework on top of the RDMA-based far memory system.
We propose Fargraph+, a system with parallel graph data offloading and far memory coordination
strategy for enhancing efficiency of graph processing workload on RDMA-based far memory architecture.
Specifically, Fargraph+ reduces the overall data movement through a well-crafted, graph-aware data
segment offloading mechanism. In addition, we use optimal data segment splitting and asynchronous
data buffering to achieve graph iteration-friendly far memory access. We further configure efficient
parallelism-oriented control to accelerate performance of multi-threading processing on graph iterations
while improving memory efficiency of far memory access by utilizing RDMA queue features. We show
that Fargraph+ achieves near-oracle performance for typical in-local-memory graph processing systems.
Fargraph+ shows up to 11.2× speedup compared to Fastswap, the state-of-the-art, general-purpose far
memory platform.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Today’s various graph applications demand better memory per-
formance at different graph scales [22,51,53,44,41]. In the past,
most graph applications can be processed by a single-node system
given the relatively small size of the graph in existing in-memory
graph frameworks [34,51,53]. Distributed graph frameworks are
required only for very large-scale data analytic problems due to
the communication overhead [43,55,29]. Nevertheless, as shown
in Fig. 1-(a), many graph frameworks mainly focus on medium-
sized graphs (from 1GB to several hundreds of GB) [54,21,44].
Although current out-of-core graph computing frameworks could

* Corresponding author at: Shanghai Jiao Tong University, Shanghai, China.
E-mail addresses: jing618@sjtu.edu.cn (J. Wang), lichao@cs.sjtu.edu.cn (C. Li),

liuyib@sjtu.edu.cn (Y. Liu), sjtuwtl@sjtu.edu.cn (T. Wang), meijunyi@sjtu.edu.cn
(J. Mei), luzhang@sjtu.edu.cn (L. Zhang), wpybtw@sjtu.edu.cn (P. Wang),
guo-my@cs.sjtu.edu.cn (M. Guo).
https://doi.org/10.1016/j.jpdc.2023.02.015
0743-7315/© 2023 Elsevier Inc. All rights reserved.
handle medium-sized graphs with external storage like disk and
SSD, they suffer significant performance degradation due to the I/O
bottleneck.

In addition, to process workloads with various data inputs in
the cloud, an important trend is to build disaggregated mem-
ory pools and enable far memory (i.e., remote main memory) ac-
cesses [32,24,9,6]. In this case, memory-consuming programs like
graph applications can easily scale out by oversubscribing memory
if the local server has limited capacity. Meanwhile, with high-
speed network protocols such as Remote Direct Memory Access
(RDMA) [10] and Compute Express Link (CXL) [8], far memory ac-
cess can achieve near-DRAM performance, as shown in Fig. 1-(b).
With appropriate memory management, better system utilization
can be achieved. Such a far memory architecture has shown great
promise in accommodating medium-sized graph processing appli-
cations. Consequently, it is expected to be a good complement to
traditional single-node systems and distributed systems (detailed
in Section 2).

https://doi.org/10.1016/j.jpdc.2023.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.02.015&domain=pdf
mailto:jing618@sjtu.edu.cn
mailto:lichao@cs.sjtu.edu.cn
mailto:liuyib@sjtu.edu.cn
mailto:sjtuwtl@sjtu.edu.cn
mailto:meijunyi@sjtu.edu.cn
mailto:luzhang@sjtu.edu.cn
mailto:wpybtw@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
https://doi.org/10.1016/j.jpdc.2023.02.015

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 1. (a) The case of memory usage expansion and the raw graph size of existing graph processing frameworks. (b) The data transfer duration of different memory access
scenarios.
Nevertheless, simply performing memory offloading of graph
processing on far memory architecture may not provide the best
performance. A straightforward approach of far memory out-
spreading is to replace the original swap space with the far mem-
ory space [13,20,2,18], without changing the strategy of page map-
ping and reordering in the original single-node graph framework.
These works often limit local memory usage to trigger page faults
and leverage high-speed network interfaces like RDMA to access
far memory space. In other words, when the upper-layer appli-
cation framework intends to access the far memory, it passively
leaves all the pressure of deciding thrown-out parts to the OS ker-
nel. Although this type of design is transparent to the application,
it brings significant context switching overhead [13,2,12]. To re-
duce the above system overhead, recent studies attempt to build
a user-level runtime to reduce kernel overhead [30,4]. However,
they are not aware of the workload characteristics and they may
miss performance optimization opportunities when running graph
processing workload on far memory system (detailed in Section 3).

Furthermore, improving the parallelism level of graph pro-
cessing on RDMA-based far memory environment needs careful
consideration. First, one should choose a proper number of as-
signed threads on graph programs. Simply adding threads to graph
programs may not provide better performance speedup, which
may cause performance degradation and memory space under-
utilization due to graph data properties [26,47,46]. Second, one
should have detailed parallelism configurations on RDMA-based
far memory access. To adapt to multi-thread computation, one
may start abundant RDMA queue pairs corresponding to the num-
ber of virtual CPU cores. Multi-threaded communication in MPI is
limited by serial data fetching based on RDMA transmission pat-
terns [14,35]. In this case, RDMA queues are not fully utilized so
that bandwidth can be wasted [1].

The key opportunity of optimizing graph workload on far mem-
ory comes from two aspects: 1) the distinctive data segments and
2) the iterative execution model. First, a graph processing program
features a group of data segments with distinctive characteris-
tics [34,26,51]. On one hand, the size of different data segments
may vary. Some data segments containing write-intensive vertices
can be much smaller than others that maintain read-only edges.
On the other hand, data segments in graph programs have differ-
ent memory access patterns. Some data segments are requested
frequently while some are accessed only once. Therefore, we need
to determine the appropriate data segments that should be moved
out (to far memory). Second, graph applications generally have
many iterations that update vertex values by continuously search-
ing graph data [22,34,54]. In each iteration, the program has to
wait for the graph data to be fetched. Typically, the system fetches
data by either propagating the current node value to neighbors
through outgoing edges (push-based scheme) or gathering values
145
from neighbors through incoming edges (pull-based scheme). In
the existing far memory environment, the above data fetching op-
erations may suffer frequent interruptions due to far memory ac-
cess. It is desirable to minimize far memory overhead for iterative
graph workloads.

In this work, we ask this question: how can graph processing
applications gain their best performance on the emerging far memory ar-
chitecture? To answer this question, we take the first step to adapt
a general graph processing framework GridGraph [54] to far mem-
ory environment. In recent years, far memory research has been
mainly focused on general-purpose design that can provide a bet-
ter trade-off between performance and resource utilization. In con-
trast, we explore the benefits of an application-specific far memory
platform. Our technique intends to unleash the full potential of far-
memory-based graph processing from three primary perspectives:
1) smart data segment offloading 2) adaptive far memory inter-
action and 3) efficient parallelism optimization. We introduce the
way to identify data segments that are most suitable to be placed
on the far memory. We also reconfigure the parallel RDMA-based
far memory access to fit the graph workload better. We further
control the multi-threading design of graph applications on the
basis of saving RDMA-related resources (CPU core, memory space,
RDMA queues, etc.) to achieve higher efficiency. We demonstrate
the necessity of jointly managing application programs and far
memory systems with a software/hardware co-design approach to
achieve the best performance and efficiency.

Our contributions are listed as follows.

• We envision RDMA-based far memory as an attractive alter-
native to existing graph processing models. We propose Far-
graph+ based on Fargraph [38] and improve the parallelism
performance and memory efficiency of graph processing on far
memory.

• We design and optimize the parallelism of Fargraph+ based
on parallel graph iteration control and optimized graph data
structure for better performance of graph-aware data segment
offloading and fetching.

• We further improve performance while reducing memory con-
sumption of Fargraph+ by optimizing RDMA queue configu-
ration for higher memory efficiency of iteration-friendly far
memory interaction.

• We evaluate Fargraph+ in detail. We outperform the out-of-
core graph framework GridGraph by up to 8.2× and the state-
of-the-art far memory platform Fastswap by up to 11.2×. We
also have up to 2.5x performance improvement compared with
Fargraph.

The rest of this paper is organized as follows. Section 2 com-
pares different far memory architectures. Section 3 gives key ob-

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 2. Different architectures that can be leveraged for graph processing. (a) Kernel-level far memory with modified swap mechanism of OS. (b) User-level far memory
communicated through RDMA.
servations to motivate this work. Section 4 presents the overview
of Fargraph+. Our system mainly consists of three parts, including
the front-end (graph-aware data segment offloading) in Section 5,
the back-end (iteration-friendly far memory access) in Section 6
and the parallelism-oriented control in Section 7. Section 8 further
introduces the implementation of Fargraph+. Section 9 introduces
the evaluated experiments setup and Section 10 evaluates the per-
formance results of Fargraph+. Section 11 discusses related works,
and finally, Section 12 concludes this paper.

2. Background

In this section, we introduce far memory and compare it with
traditional systems in the context of graph processing.

2.1. Far memory and its current issues

Recently, there are two types of far memory architecture,
fabric-based and NIC-based far memory architecture. Fabric-based
far memory uses direct-connected far memory technologies, like
NVLink [11] and CXL [8], and external memory devices can be
accessed directly as alternative memory space of local memory
[4,24]. They can achieve almost doubled bandwidth compared to
RDMA-based far memory [6,28,9]. However, fabric-based far mem-
ory hardware device is often 10-100x more expensive due to the
high cost of fabric-supported components. In addition, few open-
source corresponding OS the direct-connected protocols, which
makes it difficult to evaluate and design.

NIC-based far memory architecture allows one to opportunis-
tically borrow memory resources from a remote node. NIC-based
far memory technology greatly benefits from the development of
high-speed networks like RDMA, making memory disaggregation
more practical. As shown in Fig. 2, this typically requires RDMA
to accelerate memory access over the high-performance network.
With proper far memory management, one can balance resource
allocation and save local memory for more critical tasks. Neverthe-
less, existing general-purpose far memory management schemes
such as Infiniswap [13] and Fastswap [2] fail to fully unleash
the potential of the far memory system. They cannot achieve full
throughput due to a heavy reliance on the swapping mechanism
of the OS when accessing far memory.

2.2. Kernel-level and user-level FM

We compare the kernel-level far memory system with OS swap
kernel (the swap backend is RDMA) and the user-level far memory
system with remote memory access on RDMA in Fig. 2. Replacing
the swap backend directly with the RDMA kernel is a straight-
forward idea for far memory access. The Linux Swap mechanism
involves two parts: the front-end (i.e., Frontswap [25]) and the
back-end module. By inserting an RDMA-based swap module into
Frontswap, the back-end module is redirected from the disk to
146
Fig. 3. Latency comparison of kernel-level far memory with modified swap mecha-
nism of OS (on the left) and user-level far memory communicated through RDMA
(on the right).

RDMA. Although kernel-level far memory is transparent to appli-
cations by passively swapping cold pages to RDMA far memory, it
suffers significant overhead. Since the swap space of the front-end
is indispensable for RDMA-based swap, the kernel-level context
switch cannot be avoided, which significantly increases the latency
of each far memory operation. In addition, for kernel-level swap-
based far memory, one still needs to create local swap space on a
disk as the backup for the RDMA back-end [2,13]. The far memory
access procedure is often blocked due to the frequent disk access
for RDMA failure backup.

Meanwhile, Fig. 3 shows the detailed execution delay of each
step on kernel-level page access through the swap mechanism
and user-level page fetching through RDMA protocol. User-level far
memory has much lower remote memory access latency through
RDMA operations than the kernel-level far memory with OS in-
volved. User-level RDMA-based far memory earns performance
from the skip of sequential page fault and the locked data swap
for each data fetch. In addition, CPU-free RDMA allows data over-
lapping of local computation and far memory communication.
Furthermore, RDMA-based far memory gives scalable memory
fetching and updating with different sizes of data chunks when
transferring. Thus, user-level RDMA-based far memory access can
achieve higher performance and have more flexible programming
methods compared with swap-based far memory systems.

2.3. Comparison of different execution models

Both single-node and distributed computing have been used for
graph processing. As a complement to the two models, far memory
provides a new option for scaling out memory with high per-
formance. First, far memory provides a ready-to-use scheme for
memory-intensive applications to oversubscribe memory, which
outperforms disk-based I/O on a single node. Second, at the clus-
ter level, far memory shows promise in further improving resource
utilization, especially for the SOTA schedulers [31,3]. To sum up,
far memory execution model allows one to achieve better perfor-
mance per bit in a complex execution environment.

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 4. The measured duration of computation-intensive program Quicksort and memory-intensive graph programs (BFS, PageRank, BC) on growing far memory proportions.
Far Memory vs. Single-Node Systems. The traditional single-
node graph processing system, with all data loaded in local mem-
ory, often shows the best performance [34,26,53]. If the size of
the graph is large, one can use disk storage as a memory exten-
sion [54,29,21], as shown in Fig. 2-(b). However, this may come
with considerable performance overhead even with a fast SSD. In
contrast, far memory offers an attractive alternative to disk-based
memory extension, especially in the cloud environment [2,18]. Far
memory access shows lower performance degradation compared
with disk I/O. On the other hand, faced with fluctuating workload
demand, far memory represents a more convenient way to over-
subscribe memory on demand.

Far Memory vs. Distributed Systems. Distributed computing is
often used to process large graphs, with CPU and memory on each
node working together, as shown in Fig. 2-(c). The key difference
with far memory is that far memory focuses on data partition
instead of task partition (which is common in the traditional dis-
tributed model). It is challenging to program directly due to the
cost of both task and data partition. Traditional distributed model
scales out the overall computing resource, while far memory sys-
tems aim to enhance the memory performance of each node. Far
memory is well complementary to the existing distributed systems
since it can further enlarge the available memory capacity of each
node.

3. Design considerations

This section presents our key observations of running graph
applications on far memory. This motivates us to design an opti-
mized strategy of offloading graph data efficiently in RDMA-based
far memory environment.

3.1. Graph-aware opportunities

We analyze the impact of far memory usage on task dura-
tion in different scenarios. Specifically, we define far memory ratio
α as the ratio of far memory usage to all the memory usage of
the application. The proportion of local part is (1 − α). We run
a computation-intensive program Quicksort and memory-intensive
graph programs including BFS, BC, and PageRank implemented in
the graph processing framework GridGraph [54] on swap-based far
memory platform Fastswap [2]. We use Cgroup to limit the local
memory usage and leverage page swap to offload pages to RDMA-
based far memory. Fig. 4 shows our measurements of task duration
with different values of far memory ratio. We change the far mem-
ory ratio by linearly increasing local memory limitations.

Fig. 4 shows that the duration of applications on Fastswap [2]
increases remarkably as far memory ratio grows. One reason for
this is the kernel overhead, since the “sys time” representing the
147
in-system latency grows significantly in Fig. 4. The duration in-
crease of graph applications mainly comes from growing page
faults when adding the far memory ratio. Since Fastswap is imple-
mented at the kernel level, each page fault and page fetching from
far memory involve kernel operations so that the system time in-
creases quickly. Furthermore, swap-based far memory works like
Fastswap [2] swap out the least accessed pages in the tail of LRU
(least-recent-used) queues to far memory. However, as graph pro-
cessing typically has irregular data access patterns, swap-based
far-memory systems may swap out frequently accessed pages and
cause back-and-forth data movement. If we design far memory ac-
cess operations at the user level, we will skip most of the kernel
overhead and improve performance.

Graph workloads show different duration trends in the con-
text of far memory, as shown in Fig. 4. For general tasks like
Quicksort (Fig. 4-(1)), we observe a continuous duration increase.
Differently, we observe that graph programs have an obvious per-
formance turning point in Fig. 4-(2),(3),(4). The relationship be-
tween far memory ratio and workload duration is quite similar
in the three graph programs. Graph programs exhibit a duration
curve that stays relatively flat when the far memory ratio is less
than 0.6. The duration increases rapidly if the far memory usage
is larger than the turning point. For example, the turning point is
0.6 for BFS, 0.6 for BC, and 0.7 for PageRank in our experiment.
The main reason for the turning point is that graph workloads
have a distinguished set of hot pages with frequent memory ac-
cess. When far memory allocation touches the hot pages (when far
memory percentage exceeds the turning point), the system’s per-
formance becomes sensitive to the far memory ratio. The reason is
that graph processing features much more frequent memory access
on vertex-related pages than edge-related pages, as stated later in
Fig. 8. This motivates us to carefully offload a large number of cold
parts (edge-related data) to far memory.

In summary, it is desirable to design a memory offloading strat-
egy of graph workload on far memory for better performance.
First, user-level data offloading can reduce the overhead of page
swap. Second, fine-grained partitioning of graph data and offload-
ing memory-consuming and cold data to far memory can further
improve workload performance and system efficiency.

3.2. RDMA efficiency issue

Although MLNX_OFED (OpenFabrics Enterprise Distribution) en-
vironment provides RDMA atomic operations, it is not easy for
developers to configure RDMA settings without specific skills [13,
2,12]. For example, we often transfer data with chunks of aligned
size through network frames on RDMA. It is important to choose
a proper chunk size due to the total performance impact. As Fig. 5
shows, we test the total duration when transferring different size
of graphs (with 40 thousand to 40 million vertices and edges of 10

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 5. The measured duration of transferring graph data with various transferring chunk size on RDMA. Sometimes it shows a “smile curve”.
Fig. 6. Performance of graph applications varies on different graph algorithms and
datasets at different parallelism level.

times of vertex number on RMAT format [5,16]). Note that RMAT
is the abbreviation of Recursive Matrix that naturally generates
power-law degree distributions among graph vertices and RMAT
graphs are often stored in edge list format. The results show that
neither small (about 10K) nor large (500M) chunk size is the opti-
mal chunk size to achieve the best behavior.

Importantly, graph applications spend most of the time in data
fetching and value updating. In each iteration, the graph algorithm
fetches data from both local and far memory and processes them
in the local region. Graph programs have a lot of iterations and
the data to be fetched in the next iteration has dependencies on
the previous iteration. Since the data transfer can be completely
asynchronous between each RDMA channel, it often causes trouble
when the newly arrived data overwrite the existing valid data dur-
ing one-sided RDMA operations. Carefully configuring data fetching
and buffering during each iteration can help us cache the right
data while avoiding communication delay.

In summary, it is essential to set RDMA-based far memory ac-
cess in the right way to fit the iterative graph execution model.
First, configuring proper chunk size according to graph data is
tricky to optimize data communication latency. Second, careful data
buffering is important for correct data fetching in graph workloads.

3.3. Parallelism opportunities

Existing big data frameworks often improve the parallelism
level of the applications by adding more threads. For example,
one may use ready-to-use OpenMP, OpenMPI, Cilk, and Cilk+ to
enable parallel computing automatically. We run classical graph
algorithms of GridGraph [54] on real-world graphs with all data
in memory, referring to Table 2 and 3. The overall runtime when
assigning different numbers of threads is collected and the perfor-
mance speedup at different parallelism levels is shown in Fig. 6.
148
Graph applications behave a little differently from the other easy-
to-parallel applications. First, more threads may bring performance
degradation. For example, when assigned 64 threads, the BFS acts
worse than any other condition, as shown in Fig. 6-(a). Second,
Graph programs often maintain an optimal range of thread num-
bers, and allocating thread numbers out of the optimal range may
cause resource inefficiency. For example, the optimal range of BFS
on Orkut dataset is 2 to 8, since 1 thread is less than 2× speedup
(the dotted line in Fig. 6) and 16 threads can not bring per-
formance benefit. Multi-threaded graph traversal increases inter-
thread communication, which in turn undermines the benefits of
parallelism in graph application. To avoid negative effects as well
as save computing resources, we should choose the optimal range
of thread numbers, which varies across different graph algorithms
and datasets.

More importantly, the performance issue of parallelism can be
worse when involving the RDMA environment. Although RDMA
communication has been supported by the MPI standard [37] for
several years, it is still difficult to access RDMA-based far memory
efficiently [14,35]. First, multi-threaded communication in MPI is
limited by serial data fetching based on RDMA transmission pat-
terns. For each thread, RDMA will build queues corresponding to
each virtual CPU core to prepare for data communication. How-
ever, in this case, the content in each queue is isolated so that
the local process must wait for all the requested data to arrive. To
solve this problem, one can configure RDMA to share received data
by shared receive queue (SRQ) in multi-queue environments. Sec-
ond, to adapt to multi-thread computation, one often starts abun-
dant RDMA queue pairs which consume non-negligible memory
space [1]. By default, the system will build send queues, receive
queues, complete queues to hold events, and data content chan-
nels to transfer data for each thread. Events can be discovered to
drive the next operation and content corresponding to each event
will be transferred.

In summary, there are opportunities for adapting graph pro-
cessing to parallel far memory access through RDMA. First, choos-
ing the optimal parallelism level can improve workload perfor-
mance with high resource efficiency. Second, an innovative config-
uration of resource sharing and allocation of RDMA queues can re-
duce abundant resource usage while supporting parallel far mem-
ory access.

4. Overview

The above analysis shows that smartly offloading graph work-
loads to the remote memory space is critical. In addition, effi-
ciently fetching data using RDMA with proper configurations is
necessary to achieve better performance. We propose Fargraph+,
an optimization strategy that allows graph programs to run on

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
Fig. 7. An overview of Fargraph+ platform.

far memory architecture in parallel efficiently. Fig. 7 provides an
overview of Fargraph+ which mainly consists of three parts.

(1). Front-end. The graph-aware Front-end is the working set
partition strategy that decides how to offload graph data segments
by analyzing the memory access patterns of the graph. Fargraph+
front-end identifies and separates the working sets into two parts
previously at the granularity of data segment. The front-end keeps
hot data working sets in the local memory region and uses inter-
faces to fetch the other data working sets to remote regions with
relative keys.

(2). Back-end. The RDMA-based Back-end designs the directive-
Like far memory interaction interfaces to build up efficient iteration-
friendly far memory access coordination on RDMA. Fargraph+
back-end implements the main optimization with the user-level
RDMA operation. The back-end buffers the transmissions to sup-
port the one-side access and implement the overlap of data fetch-
ing and processing to reduce total latency.

(3). Controller. The parallelism-oriented Controller performs
parallelism control of the graph data fetching and processing of the
entire program, giving proper directions to the Front-end and Back-
end according to the outsider performance pressure and resource
limitation. Fargraph+ controller selects proper thread numbers and
memory usage limitations for the current applications according
to the type of graph algorithms and datasets. The controller con-
figures shared-memory parallel programming in each iteration of
the original graph programs. It also configures the parallel RDMA
mechanism with queue resource sharing to achieve higher perfor-
mance and efficiency of far memory access.

All the designs are implemented in the two distinct procedures.
1) the master process that resides on the active side (the client)
and 2) the daemon process on the passive side (the far memory
server). Our key strategies are mainly implemented on the active
side, with assistance from the passive side. In Section 8 we intro-
duce our implementation.

5. The front-end: graph-aware data segment offloading

At the front-end, we first analyze the data segments of the
graph program and classify them into several data segment groups
(DS-Group). We then determine data segments that are preferable
to be transferred to the remote side in advance for each particular
DS-Group.

5.1. Graph data segment grouping

We investigate the data segments of stacks, queues, as well as
graph-specific data items (e.g., the array of vertices) in the graph
program. Data segment consists of a set of pages. In Fig. 8, we
show the page access statistics when running BFS on a graph in
LiveJournal format. We perform page address tracing and we show
the allocated memory area corresponding to Parents of Vertices,
149
Fig. 8. We test the access frequency of each page in BFS. We show some distin-
guished data segments in the graph processing program.

Frontiers of Vertices, Edge lists, etc. As we can see, edge-related
data segments are often accessed at limited times compared to
vertex-related data segments, such as vertex values, parents, fron-
tiers, etc. Meanwhile, the number of traversed edges (memory
read) can be several orders of magnitude greater than the num-
ber of vertices. Frequent value updating (memory write) always
happens on a small group of vertices. It is undesirable if those
frequently-accessed data segments are offloaded to the remote side
(what the existing works often do). The above analysis shows that
one can achieve better far memory offloading effectiveness at the
data segment level by analyzing the graph workload.

In this work, we classify data segments into a few well-crafted
groups i.e., DS-Groups, based on graph properties. Empirically, we
divide data segments into four groups according to memory access
behaviors. Fig. 9 shows our classification methodology. ① The DS-
Group 1 consists of memory offloading (short as MO) sensitive data
segments in which data is often read and written in a highly fre-
quent manner, such as Vertex ids, attributes, frontiers, parents (a
subset of vertices). ② The DS-Group 2 consists of MO less sensi-
tive data segments such as intermediate data variables. They are
often written or generated temporarily during computing but do
not need to be read from memory. ③ The DS-Group 3 contains MO
less insensitive data segments with pages read many times and few
rewritten, like edge blocks. The read-only feature, if used properly,
is well-suited for the RDMA environment. ④ The DS-Group 4 (cold
segments) is MO insensitive data segments, staying untouched for
the majority of the time.

There are two ways to classify DS-groups. The first is offline
analysis. One can calculate the average page access frequency of
each data segment and treat the above-average data segments as
the MO-sensitive data segments and the below-average ones as
MO-insensitive data segments. The other way is to track the pages
in each data segment online periodically, which is more accurate
but time-consuming. One can set a time threshold T . If the page is
accessed at time T , it will be labeled Read/Write-much; otherwise,
it will be labeled Read/Write-few. Then we classify data segments
into DS-groups according to the labels of these pages. In this work,
we use offline profiling to identify the characteristics of data seg-
ments (DSs) and classified DSs to guide directive placement for
simplicity and practicality.

5.2. Flexible data segments offloading

The DS Group provides a way for memory offloading. For exam-
ple, one can keep MO-sensitive data segments (DS-Groups 1 and 2)
locally and move all the MO-insensitive data segments (DS-Groups
3 and 4) to remote memory. However, as mentioned earlier, it is
likely that the MO-insensitive data segments such as edge blocks
are the majority among all the data segments. In this case, re-
stricting local memory usage and moving a huge amount of data
segments of DS-Groups 3 and 4 to a remote memory server may
cause nontrivial performance degradation.

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
Fig. 9. The description and classification of data segments. We show the data parti-
tion method based on transferable data segments on the right part.

Fig. 10. The graph data structure of CSR, CSC, Grid Block and Edge List.

To cope with the above issue, we further define resistant data
segment set and transferable data segment set (TDSS), which refers to
a refined set of selected data segments in related DS-Groups that
are preferable to be transferred to far memory. The data segments
in TDSS are transferable data segments with transferable labels.
The idea is enlightened by the concept of Writable Working Set[7]
which defines a set of pages that are critical to programs when
processing live migration. We keep data segments in DS-Group 1
and 2 as local resistant data segments that always stay in the lo-
cal memory. We further select data segments from MO-insensitive
groups (DS-Groups 3 and 4) to the remote side, as indicated in
Fig. 9.

We adopt a more flexible data partition approach based on
TDSS. Our design allows one to keep part of the TDSS in local
memory. We set priorities for the transferable data segments to
decide the preferable offloading order of them according to the ra-
tio of local and remote data. In this way, we can achieve a flexible
trade-off between local memory saving and far memory perfor-
mance in practice. Specifically, we give high priority to the read-
only data segments in the transferable data segments. The insight
behind this is that most data segments in TDSS of a graph process-
ing workload are read-only (e.g., edge blocks). Fetching read-only
data with a one-sided read allows us to minimize data transmis-
sion overhead. We can evict the data fetched from far memory as
soon as the data is released to save local memory space.

5.3. Parallel data segments fetching

Proper graph data structure. Fetching graph data segments in
the memory space in parallel can shorten the overall latency. How-
ever, random memory access in graph processing programs may
block parallel processing. Fortunately, graph data are often prepro-
cessed from raw edge lists to CSR, CSC, or grid block structure in
today’s computing framework [34,54]. Fig. 10 shows the general
graph data structure of CSR, CSC, grid Block, and edge List. The pre-
processing procedure makes it easier to capture graph properties
and to offload graph data in a more efficient and fine-grained man-
ner. Inspired by GridGraph [54], we can use ordered graph data so
that more graph data can be accessed from registered physical con-
tiguous memory. The ordered grid block data structures gain more
benefits from parallel processing on far memory system compared
with unsorted CSR or CSC data structures.

Multi-thread data block fetching. Also, there are some tricks
when assigning threads to programs in our system. The overall
150
Fig. 11. We split data segment into chunks. We use indexes to facilitate data seg-
ment fetching on far memory.

performance is greatly influenced by the number of graph blocks
in the graph grid. The programs often perform when the thread
number is an integer multiple of the graph partition number.
Specifically, Executing processes the same as the number of CPU
cores in a machine and spreading a process to a different CPU
can be a better practice compared to assigning all the threads on
the same processor. In addition, when working with Symmetric
Multi-Processing (SMP) machines with NUMA support, binding the
processes to specific CPU cores may provide better utilization of
the CPU resource thus providing better performance. Thus in our
system, we use taskset utility to set processor affinity for each pro-
cess to optimize overall latency.

6. The back-end: iteration-friendly far memory access

In the following, we further discuss how to improve far mem-
ory access efficiency given the above data segment offloading
strategy based on RDMA during each graph iteration. The current
RDMA one-sided read mechanism allows one to directly fetch data
from remote memory without waiting for system handshaking.
However, an appropriate configuration is essential for maximizing
the benefits of graph processing on far memory. In our back-end,
we break the transferred data into chunks with one-sided access
within each iteration, and we overlap the computation and com-
munication in different iterations to reduce the total duration.

6.1. Data segment splitting

Appropriate data transfer is critical. RDMA-based far memory
environment supports memory fetching and updating with differ-
ent sizes of data chunks. Each chunk is viewed as the basic unit of
one-sided read/write. Since the size of each data segment is some-
how different, we transfer data based on a finer-grained unit: data
chunk. As the left part of Fig. 11 shows, we transparently split
each data segment into multiple chunks when writing to the far
memory, and we merge these chunks into the data segments when
fetching back. If the data segment size is smaller than the size of
a chunk, it will not be divided.

We set indexes for remote data segments, as the right part of
Fig. 11 shows. It reduces the traversal cost of finding the corre-
sponding data segments in far memory. For example, we use the
vertex IDs of each grid block as the indexes of edges that are stored
in the far memory. We can also use bitmap offsets to guide fast
neighbor access accordingly. To ensure secure and isolated mem-
ory access, we send the local memory protection key (called lkey)
with the indexes together and then fetch the remote key (rkey)
and the corresponding data back.

6.2. Data segment buffering

Our second optimization overlaps data computation and com-
munication. We configure the system in such a way that it starts

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
Fig. 12. The iteration-friendly far memory access with overlapping.

to request the data for the next iteration when the current iter-
ation is still underway as Fig. 12 shows. We design buffers that
support iteration pipeline overlap by hiding communication when
fetching data segments, shown in Fig. 14. For grid or shard-like
graph processing, it is easy to get the offsets of the next blocks ear-
lier than the next loading. It is feasible since the start and end of
the data transmission are two separate control events with RDMA.
Note that sometimes a one-sided read can be very fast, to the ex-
tent that it may overwrite the last data block. If there is no buffer,
the data block supplied for the current iteration will be overwrit-
ten by the new operation before being processed. Thus, we also
design send/receive buffer pairs for the local master and the re-
mote daemon process.

If we want to hide the communication overhead completely, the
data transfer time needs to be shorter than the execution time for
each iteration. In fact, for most graph iterations, data transmission
is often much more time-consuming (e.g., 2x) than the process-
ing of the obtained data blocks from far memory (as shown in
our experiment). As a result, the communication latency cannot be
fully hidden and the time for each iteration is extended. Therefore,
workloads with shorter transfer time and longer execution time
often have better speedup than the others. In our experiment, the
graph workloads have a smaller frontier size (i.e., shorter trans-
fer time) in their early-stage iterations, and therefore we observe
notable performance improvement at the beginning of their execu-
tion.

6.3. Parallel RDMA configuration

Appropriate RDMA configurations are essential for maximiz-
ing the benefits of parallel graph processing on far memory. It
is thus important to set proper data channels for the transferred
data and instructions. An optimized operation is to separate con-
trol operations and data channel so that we can parallel the trans-
ferring of control-related operations and data read/write opera-
tions. In RDMA protocols, the transferred data through RDMA in-
cludes Small messages and Large contexts. Small messages guar-
antee the promotion of event-based RDMA communication, which
includes control operations (create/destroy/query/modify), data in-
dexes, RDMA event states, read or write requests, etc. Oftentimes,
they are very expensive because most of the time, they perform a
context switch. Sometimes they allocate or free dynamic memory
and sometimes they are involved in accessing the RDMA device.
Sending these small messages in a special queue in Message Queue
Pairs (QP), as shown in Fig. 13) will provide better latency since it
eliminates the need for the RDMA device to perform an extra read
(over the PCIe bus) in order to read the message payload. As for
Large contexts, i.e. offloaded data on the far memory, they often
provide large data chunks that can feed to local programs. Thus,
we send them in the Work Request of the Context Queue Pairs (QP)
(as shown in Fig. 13) to gain faster far memory access.

In order to improve memory efficiency, we further compress
the space by configuring RDMA queues on the basis of ensuring
151
Fig. 13. An example of parallel control on Fargraph+.

application performance. We carefully configure the queue length
and queue number to reduce the memory resource usage of RDMA.
Memory consumption of RDMA protocol mainly depends on the
total memory size of data contexts in RDMA queues. To save mem-
ory space, it is better to reduce the size of the used queues to
the minimum. In each thread, one should have at least one mes-
sage queue pair (send queue and receive queue) and one data
context pair. However, when configuring the Queue Pair(QP) in
multi-thread conditions, the size of queues grows rapidly. Instead
of having a separate receive queue and posting many receive re-
quests for every queue pair, we set Shared Receive Queues (SRQ)
to save the total number of outstanding receive requests and re-
duce the total consumed memory, as shown in Fig. 13. Second,
setting message queues (which is stated above) can reduce lo-
cal memory usage since small messages require smaller buffers.
As graph workloads are memory-intensive, we rarely have perfor-
mance down gradation due to cutting queues while keeping the
RDMA device busy. We will further show the effectiveness of our
design in our evaluation.

7. The parallelism-oriented control

Inspired by CongraPlus system which develops a NUMA-aware
scheduler [27], we designed a multi-threaded controller with two
phases: offline collection phase and online allocation phase. In the
offline data collection phase, the commonly used graph datasets and
graph algorithms are synthesized and run with a different num-
ber of threads to obtain the information important for scheduling.
We run the synthesis of graph datasets and algorithms to collect
run-time information. We build offline tables of execution time,
threads, far memory ratio, dataset partition number, queue length,
etc. In the online resource allocation phase, the controller config-
ures the resource limitations according to the available remaining
resource and the offline table to achieve optimal efficiency (best
performance on the limited resource) for the program.

We give an example of the parallelism control procedure of Far-
graph+, as shown in Fig. 13. We have implemented the optimized
configuration of parallel iteration, parallel RDMA, chunk size and
queue length in the program. We further allocate proper thread
and far memory resource to the program according to the offline
table. To perform better on NUMA architecture, we assign differ-
ent tasks to different sockets to get balanced loads. By binding the
execution of a specific task to a socket, the Linux first-touch mech-
anism can be utilized to avoid cross-node memory access.

Thread allocation. In the thread allocation module, we prefer
to give more cores to tasks that are can achieve better overall la-
tency in multi-threaded situations. Performance improvement is
collected and calculated in the offline table. We measure the re-
duction of overall runtime when assigning one more core and
assign the core to the task with the largest time reduction. The
allocation will be repeated until a conflict arises or multi-core no
longer brings performance gains. In this work, we reduce conflict

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
drawbacks by stopping launching a task without minimum avail-
able resources in the system. If there is no free CPU core or the
free local memory cannot meet the turning point local memory
requirements of the current task, it will not be launched.

Far memory allocation. We adjust the far memory ratio of each
arrived program according to the resource limitation of the cur-
rent system. We will offload the insensitive graph data segments
directly according to the memory resource limitation. As discussed
in 3.1, there is a runtime turning point in the graph program as the
far memory ratio increases. In order to make more efficient use of
local memory, we set the far memory ratio of all the concurrently
running graph programs to the ratio corresponding to the perfor-
mance turning point. In this case, the local memory of each task
can be squeezed as much as possible so that the server can main-
tain more graph programs to achieve higher task throughput and
better overall memory efficiency.

8. Directive-like implementation

We implement Fargraph+ with directive-like instructions, which
slightly modifies the original graph framework. All the far memory
operations with optimized configuration through RDMA are encap-
sulated into concise function calls with necessary parameters and
thread constraints. We insert our far memory access interfaces into
the original graph frameworks to manage the selected data seg-
ments with parallel iterations.

8.1. Interfaces design

Our far memory access interfaces are described as follows. We
mainly provide six interfaces for Fargraph+. Add_transferable_flag
makes data segment offloading decisions for the whole program.
It adds transferable flags to each data segment in a data segments
list (DS_list) based on the given far memory ratio (detailed in
Section 3.1). Build_connection() starts the connection by checking
the IP address and the transmission port. It registers the mem-
ory regions on the local node with the given memory_region_size.
Far_write_start() triggers the memory registration on the passive
side and then starts writing data to far memory. Far_write_com-
plete() returns once this round of sending data is accomplished.
It obtains the indexes of data segments on the far memory. The
lkey and rkey represent the protection key for the local and remote
memory regions, respectively. They are transferred along with the
data. Far_read_start() starts a one-sided read of each data segment
and implies the beginning time of data segment fetching. To coop-
erate with multi-thread control, the thread ID is passing as a pa-
rameter and communicates with each RDMA data queue provided
in each thread. Far_read_complete() returns the rkey and index of
the fetched data when the data transmission finishes. Our chunk
splitting and merging operations are embedded in the far memory
read and write functions.

Interfaces Insertion: The key point of the modification is the
location of the inserting interface. The pseudocode in Algorithm 1
demonstrates all the interface locations in the original program.
The Far_write_start() and Far_write_complete() of each data seg-
ment are in the preprocessing stage. The first Far_read_start() is
placed right before the beginning of all the iterations. Then, the
later Far_read_start() are placed as soon as getting the next neigh-
bors in each iteration, as shown in Fig. 12. For example, we choose
to start transferring the next data segment (DS_Next) once the cur-
rent data segment (DS_Current) is freed. This allows one to overlap
the processing of the current data segment while the next data
segment transfers. Far_read_complete() of each data segment is in
the place where the original data segments are called. This ensures
the correction of the transferred data segments. After insertion, the
152
Algorithm 1 Program Adjustment with Fargraph+ Interfaces.
1: Add_transferable_flag(DS_list, far_ratio, ...);
2: Build_connection(IP,port,memory_region_size, ...);
3: //send all TDSS to far memory when preparation
4: #pragma omp parallel num_threads(parallelism)
5: for each DS_i in transferable_DS_list do
6: Far_write_start(trans_flag, DS_i, index, lkey, threadID, ...);
7: end for
8: Far_write_complete(DS_indexes, rkey, threadID, ...);
9: ...continue... //waiting for data segments calls

10: //start read far DS_Current in another process;
11: Far_read_start(DS_Current, index, rkey, threadID, ...);
12: while (in each processing loop) do
13: ...continue... //original data process
14: #pragma omp parallel num_threads(parallelism)
15: while calling DS_Current do
16: if DS_Current is prepared then
17: Far_read_complete(DS_Current,index,threadID, ...);
18: end if
19: end while
20: // start receive the next DS;
21: Far_read_start(DS_Next, index, rkey, threadID, ...)
22: ...continue...//original data process
23: if DS_Current finishes occupying then
24: Free DS_Current in local RAM;
25: end if
26: end while

Fig. 14. The detailed workflow of data segment pre-transferring and far memory
coordination on Fargraph+.

program can use far memory automatically with all the optimiza-
tion of Fargraph+.

The above modification can further apply to both out-of-core
and in-memory graph frameworks. Out-of-core frameworks pro-
cess part of the data from storage like disks, while in-memory
frameworks process all the raw data in memory. For out-of-core
frameworks, one can load and stream batches of edge blocks from
far memory when processing large graphs by replacing disk access
(disk I/O) or local memory access (buffer I/O) with our APIs. For in-
memory frameworks, we load the entire graph data into the main
memory before preprocessing, and we can replace the buffer copy
operations with our APIs. One can extend our design to support
new runtimes and protocols of specific devices like NVLink [11]
and CXL fabrics [8]. We leave the extension of supporting more
applications and more far memory backends to future work.

8.2. Fargraph+ workflow

The workflow of Fargraph+ is shown in Fig. 14.
(1). Pre-processing. We start by configuring the thread num-

ber of graph programs in the front-end with customed parallelism.
RDMA queues in the back-end. To start far memory access initial-
ization, we create RDMA queues and event channels to receive key
notifications such as address-resolved, route-resolved, and port-
binding, etc. Afterward, the system needs to register memory re-
gions and put them into RDMA’s Protect Domains (PD) for memory

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
Table 1
Evaluated System Management Strategies.

Schemes Applications Mem.
Limit.

Par.
Limit.

Exe. Environment

Original GridGraph Yes No Disk
Fastswap GridGraph Yes No kernel-level FM
Fargraph Modified GridGraph No No user-level FM
Fargraph+ Modified GridGraph Yes Yes user-level FM
Oracle Modified GridGraph No No Local memory

authorization. We also build RDMA queues (including shared send,
receive, and complete queues) on both the active and passive sides.
We decide the transferable data segments and add labels and in-
dexes to them asynchronously. We then pre-transfer the decided
data segments to far memory on the passive server with RDMA
write (①, ② in Fig. 14) and obtain their far memory keys.

(2). Far memory coordination. Fig. 14 shows the general pro-
cedure of Fargraph+ in each iteration. There are two parts of far
memory coordination. i) DS-based data fetching. We start to fetch
the next DS once the frontier data of the current iteration is ready.
We transfer the indexes of the required DSs to far memory as a
parameter of function Far_read_start(). Note that we fetch graph
data in parallel graph iterations with multiple threads, we use
shared receive queues for fetching remote data segments thread
each thread. We fetch corresponding edge blocks (i.e. DSs) in order
and start the next until all the current concurrent data arrive. ii)
Chunk-based RDMA transfer. When the local region requests data,
we use RDMA one-sided read to fetch them. We divide the original
data segments into multiple chunks using RDMA SGE_LIST. We de-
vise a buffer to pre-fetch the transferred data asynchronously (③ in
Fig. 14). We also use srq_post_receive to continuously receive data
read from far memory through the shared receive queue and write
the data into buffers. Meanwhile, we directly copy the received
data from the buffer to the local region if the program requests
the data (④ in Fig. 14).

9. Experimental setup

We introduce the experimental setup design which supports
the design choices.

9.1. Hardware environment

We build our far memory platform based on two servers: a
client node and a memory node. On the client node, we use
Cgroup2 to limit the local memory usage of each process if we
need to trigger far memory access. We use OpenMP interfaces to
parallel our graph programs. We also use pthread to manage the
threads allocation and communication in the local process. Each
node is provisioned with two 16-core Xeon CPUs, 128 GB of mem-
ory, and a dual-port Mellanox ConnectX-5 RDMA NIC supporting
up to 70∼90Gb/s Ethernet. The RDMA driver is version 5.6.0 of
the OFED kernel, and it uses RoCE (RDMA over Converged Ether-
net) protocol.

9.2. Evaluated system strategies

We consider the following strategies as Table 1 shows. 1) Orig-
inal. This scheme adopts the conventional out-of-core processing
model of GridGraph on a single server. It leverages the disk to
process medium-sized graphs. 2) Fastswap. It is a state-of-the-art,
open-source kernel-level far memory platform which outperforms
many previous works [13,20]. It is an RDMA-based far memory
platform with swap kernel and local disk involved [2]. We consider
it as a key baseline strategy in this work. 3) Fargraph. This scheme
153
Table 2
Evaluated Graph Datasets.

Dataset |V | |E| Edge Size Mem. Footprint

Live Journal (LJ) 4,848 K 69 M 1.1 GB 2.4 GB
Orkut (OR) 3,072 K 117 M 1.8 GB 3.9 GB
Twitter7 (TW) 17 M 477 M 26.3 GB 47.7 GB
Friendster (FR) 65 M 1806 M 32.7 GB 60.4 GB
RMAT-1T(RM1) 100M 1T 76.2GB 202.2GB
RMAT-5T(RM5) 100M 5T 152.4GB 354.4GB

Table 3
Evaluated Graph Processing Algorithms.

Algorithms Description Mem. Access Feature

BFS breadth-first search random I/O
WCC connected components random I/O
PR web page ranking random I/O and sequential I/O
Radii graph radii estimation random I/O and sequential I/O

uses all the optimizations that we propose without parallel config-
uration and resource optimization. 4) Fargraph+. This scheme uses
all the optimizations that we propose. 5) Oracle. This is the ideal
design case of far memory, which keeps all the data in the local
main memory (best performance).

9.3. Evaluated graph workloads

We evaluate 6 graph datasets together with 4 representative
graph algorithms in our experiment. The datasets contain 4 real-
world graphs including LiveJournal (LJ), Orkut (OR), Twitter7 (TW),
Friendster (FR), and 2 generated large graphs including RMAT
graph with 100 trillion edges (RM1) and RMAT graph with 500
trillion edges (RM5) generated by PaRMAT tool [16]. Note that
the memory footprint of RM1 and RM5 exceeds the size of lo-
cal memory in our evaluation. More details are given in Table 2.
The evaluated graph algorithms are shown in Table 3. Specifically,
BFS and WCC are traversal-centric algorithms, while PageRank and
Radii are computation-centric with heavy value computation in
each iteration. We run 20 iterations for PageRank and find con-
nected components in unweighted graphs in WCC.

We perform graph processing on the GridGraph [54] frame-
work. GridGraph represents one of the state-of-the-art graph
frameworks and it is popular for its powerful grid-based data
structure. Another reason for choosing GridGraph is that it pro-
vides both buffer I/O version (in the memory) and direct I/O
version (in the storage); this feature allows us to evaluate both
kernel-level far memory (required by Fastswap) and user-level far
memory (required by Fargraph+). Note that the performance com-
parison between disk-based and RDMA-based works is almost one
order of magnitude, and one can refer to the speedup of far mem-
ory over disk I/O in previous works [13,20,2].

10. Results

This section presents detailed experiment results that further
support our design choices and demonstrate the efficiency of
Fargraph+. We compare our design with the classic single-node
graph processing framework GridGraph [54] and the state-of-the-
art RDMA-based far memory engine Fastswap [2]. We also give the
performance breakdown to show the optimization on Fargraph+.

10.1. Overall performance

We first present the overall optimization effectiveness of Far-
graph+ across 24 workloads. Fig. 15 compares Fargraph+ with all
the other evaluated schemes.

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 15. The total performance comparison of baselines by testing 24 graph workloads on Fargraph+. We normalized the Latency of each baseline by dividing the latency of
our system. The values of the bars refer to the speedup of our work compared with all the baselines.

Fig. 16. We show the performance comparison of 24 graph workloads with multiple threads on Fargraph+. No-P represents single-thread allocation with no parallelism. Full-P
refers to starting as many threads as possible (32 threads in our evaluation) on each CPU core with full parallelism. Opt-P is our method with optimal thread allocation that
can achieve the best performance.
For many datasets, computation-centric algorithms like PageR-
ank and Radii show relatively higher performance improvement
compared to traversal-centric algorithms, such as BFS and WCC.
It is mainly because the data access patterns of BFS and WCC are
more irregular than PageRank and Radii. Another reason is that
the I/O overhead cannot be fully hidden by computation in graph
iterations. The parallelism potential can be more obvious when
processing computation-centric algorithms on larger graphs such
as PageRank and Radii on RM1 and RM5, which has more chance
to hide latency in computing iterations.

The results also demonstrate the attractive scalability of Far-
graph+. In most cases, Fargraph+ shows better performance im-
provement as the graph size grows. For example, BFS, WCC, and
PageRank all yield an increasing speedup on datasets OR, TW, and
FR. Radii has a different behavior mainly because the estimation of
graph radius requires much more traversal time as the graph size
grows. On larger graph datasets RM1 and RM5 which can not be
fit into local memory, we compare the baselines including Orig-
inal, Fargraph and Fargraph+. Fastswap has limited available far
memory size and cannot handle them. In the results, we observe
remarkable performance speedup than baselines and the paral-
lel potential on larger datasets. We show significant performance
speedups, such as 9.1× of BFS and 11.1× of PageRank on RM5.
The experimental results show that greater benefits can be gained
from parallelism on larger datasets. For example, Fargraph+ shows
more speedup than Fargraph on larger datasets such as 3.2× of
PageRank on RM5 and 2.7× of Radii on RM1.

Overall, the results show that Fargraph+ is more efficient and
is closer to an oracle design compared with Fastswap. We can
achieve up to 9.2× better performance compared to Original, and
154
up to 11.2× performance compared to Fastswap. Compared with
Fargraph, we also achieve up to 3.2x speedup due to the proper
design of parallel data fetching and optimized RDMA queue con-
figuration, especially on larger datasets. Note that our evaluation
is conservative due to the use of a medium-sized dataset (instead
of hundreds of GB). It is more challenging for Fargraph+ to make
memory offloading decisions and hide communication latency with
smaller datasets. Our design approach can be applied to many
other graph frameworks and we expect it to show better perfor-
mance on larger graphs.

10.2. Performance of parallelism control

We test the parallelism control performance of the 24 work-
loads on Fargraph+ system by offloading all edge data to far mem-
ory. We assign them with different threads to show the speedup
of parallel design on Fargraph+. We test programs with 1 to 64
threads separately and analyze the results. We list the overall la-
tency of three conditions in Fig. 16, including 1 thread with no
parallelism (short as No-P), thread number equal to CPU cores with
Full parallelism (short as Full-P), and the optimized thread num-
ber that can achieve the best performance in Fargraph+ system
(short as Opt-P). To better present the parallelism speedup, we
normalized the overall latency with the least latency (i.e. Opt-P).
We show a different range of performance speedup over the sub-
optimal conditions. Overall, our parallelism control can have the
best performance and higher efficiency by saving CPU and mem-
ory resources.

Graph algorithms show different latency trends on various lev-
els of parallelism. In our evaluation, computation-centric algo-

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 17. The optimal parallelism ranges and the median values of graph workloads.

Fig. 18. The duration of BFS on dataset LJ and FR on far memory platform Fargraph+ and Fastswap under rising far memory ratios.
rithms like PageRank and Radii show relatively higher performance
improvement on higher parallelism compared to the traversal-
centric algorithms, such as BFS and WCC. For example, the best
speedup of BFS and WCC is 4.9x and 4.6x on RM5 dataset in
Fig. 16-(a) and (b), while the best speedup of PageRank and Radii
is 7.1x and 8.2x on FR and TW in Fig. 16-(c) and (d), respectively.
Furthermore, WCC, PageRank, and Radii have a larger thread num-
ber of best performance. This infers that computation-centric algo-
rithms can have more data parallelism opportunities when adding
parallel design into the system.

Graph programs on large graphs can benefit more from par-
allelism design on larger datasets. Larger datasets like TW and
RM5 show up to 8.2x and 8.1x performance speedup when us-
ing more threads, as shown in Fig. 16-(d). We present the optimal
thread numbers range of each graph workload that can achieve
over 2 times of speedup without taking up additional threads,
as shown in Fig. 17. The results show that larger datasets prefer
more threads. For example, WCC achieves the best performance
with 8 threads on LJ, OR, TW, and 16 threads on FR. The rea-
son is that larger datasets have more iterations of data fetching,
so they can have higher parallelism when data is fetched from far
memory in parallel. In addition, we show that computation-centric
algorithms can benefit more from larger parallelism due to hiding
more transfer latency in each iteration. For instance, PageRank and
Radii show better performance with at least 16 threads on each
dataset. Overall, our parallelism design shows obvious scalability
on graph applications and is friendly to large datasets.

10.3. Performance of the front-end

Efficiency of Data Offloading Design. We start by evaluating
the performance of Fargraph+’s front-end optimization, namely
the graph-aware data segment offloading. We show that work-
load awareness allows Fargraph+ to achieve better performance. In
Fig. 18 we compare Fastswap and Fargraph+ on BFS under differ-
ent far memory ratios (the ratio of far memory usage and total
memory demand).
155
Fig. 19. The normalized performance of eight workloads (BFS and PageRank on LJ,
OR, TW, FR datasets) with different chunk sizes, including large size Chunks (Large-
CS) Small size chunks (Small-CS) and optimal chunk size (Opt-CS) which get best
performance.

As shown in Figs. 18-(a) and (b), Fargraph+ shows lower task
duration compared to Fastswap, especially when the far memory
ratio is large. We observe that the duration of Fastswap rapidly in-
creases if the far memory ratio is larger than 0.8. This is because
the system starts to move MO-sensitive data segments to far mem-
ory. When the far memory ratio reaches 0.95, Fastswap could be
too slow to meet user expectations and it cannot finish even af-
ter 10 minutes of execution on BFS-LJ. In contrast, Fargraph+ still
maintains acceptable performance. The reason is that Fargraph+
uses a tailored data segment partition strategy and it can make
the best use of far memory to process a larger amount of graph
data.

Performance Impact of Data Segment Splitting. Since Far-
graph+ relies on data segment splitting (detailed in Section 6) to
improve far memory efficiency, determining the appropriate chunk
size is critical. In Fig. 19, we plot the smile-like duration curves
of 4 workloads (BFS and PageRank on LJ and OR). The results are
normalized to the duration under 4K chunk size. In particular, the
duration under 4K chunk size is higher than the duration under
32K and 256K chunk size. This indicates that the 4K-page-based far
memory access design (e.g., Fastswap) is not efficient enough. The

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159

Fig. 20. The duration of graph algorithms on dataset FR with different partitions.
Table 4
The duration comparison of Fargraph+ data buffering.

Duration (s) BFS

LJ OR TW FR

Schemes Fargraph+ w/o buffering 3.45 4.53 75.61 107.40
Fargraph+ buffering 2.97 3.93 63.23 94.02

Duration Absolute value ↓ 0.48 ↓ 0.6 ↓ 12.38 ↓ 23.38
reduction Relative value 14% 13% 12% 13%

PageRank

Schemes Fargraph+ w/o buffering 7.44 26.80 153.19 233.63
Fargraph+ buffering 6.92 23.52 123.70 200.85

Duration Absolute value ↓ 0.52 ↓ 3.28 ↓ 29.49 ↓ 32.78
reduction Relative value 7% 12% 19% 14%

reason for the smile-like curve is that the best far memory chunk
size is not only decided by graph iterations but also relevant to
the smaller one between RDMA bandwidth and PCIe bandwidth.
If RDMA transmission bandwidth (i.e., the frame size) cannot fill
the PCIe channel, a larger chunk size means better performance. In
contrast, if the RDMA bandwidth is too large, the total bandwidth
can be limited by the PCIe channel.

With PCI Express 3.0 (16 GB/s) and 9.6KB RDMA frame with
dual-port on our two-CPU mainboard, the full-bandwidth chunk
size is around (16 × 9.6 × 2)KB =307.2KB. Note that the optimal
data chunk size varies due to different hardware resource config-
urations and different program behaviors. Our experiment results
show that we can obtain the best performance at around 256KB
for most of the workloads (Only BFS-LJ favors 32K chunk size)
evaluated in this study. Therefore, we use 256KB in all of our ex-
periments.

Furthermore, graph partitions affect the overall performance, as
Fig. 20 shows. We test the latency of each workload on FR dataset
with 8, 16 and 32 partitions over the best chunk size. The largest
partitions may not have more benefits from higher parallelism. We
flag the best speedup of applications on each partition number
and we can configure the best thread number when using different
data partitions. In most cases, BFS and PageRank graph programs
with larger partitions gain more performance speedup on larger
parallelism, while WCC and Radii graph programs with more par-
titions perform better when limiting the parallelism.

10.4. Performance of the back-end

Performance Impact of Data Segment Buffering. We evaluate
the performance impact of data segment buffering which enables
efficient iteration overlap. We show the results of two representa-
tive algorithms, namely, BFS and PageRank. We measure the dura-
tion of the non-overlapped version (Fargraph+ w/o buffering) and
the overlapped version (e.g., Fargraph+). In Table 4, we show the
results of BFS and PageRank on 4 datasets. As we can see, data
segment buffering brings task duration down by up to 19%.
156
Fig. 21. The memory size comparison of original and optimized RDMA queue con-
figuration.

In general, there is a striking difference between PageRank and
BFS if we look at the duration reduction effect of data segment
buffering. In Table 4, we show the absolute and relative duration
reduction. The relative duration reduction refers to the ratio be-
tween duration reduction and the original duration. It is evident
that the reduced duration of PageRank is larger than BFS. We also
observe that the relative duration reduction of BFS is relatively sta-
ble while that of PageRank may increase significantly under larger
graph datasets.

Efficiency of RDMA Queue Optimization. We further evalu-
ate the memory consumption reduction of the optimized RDMA
queue configuration by comparing Fargragh+ and Fargraph+ with-
out queue optimization. The results are shown in Figs. 21-(a) and
(b). The longer the queue length, the more events and buffered
context spaces are left in local memory for data transferring. Thus,
we measure the memory capacity savings brought by the opti-
mization of queue configuration in the cases of multiple threads
with different queue lengths. Figs. 21-(a) and (b) shows the results
of memory occupation when queue length is 10 and 40 on differ-
ent parallelism level.

Overall, the results show that Fargraph+ can compress up to
50% space compared with Fargraph+ on the basis of ensuring ap-
plication performance. One can have more memory saving when
using more threads. The reason is that we use shared receive
queues to share events from each thread. Memory space saving
is more obvious when using a longer queue length, saving up to
23% in the queue length of 10 and up to 50% in the queue length
of 40 compared to the results in Figs. 21-(a) and (b). This is due to
the design of message and context queue pair reconfiguration and
we can save memory space corresponding to message events.

11. Related work

Disaggregated Memory Architectures. Composable Disaggre-
gated Infrastructure (CDI) [23,19] gains considerable attention in
recent years. It is proposed to break the fixed hardware compo-
nents of monolithic servers into disaggregated, network-attached
components. For example, LegoOS [32] introduces modular system

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
implementation for hardware disaggregation. String-finger [24]
builds a large memory pool with thousands of memory nodes and
tens of CPUs. There are several works [20,2,36] focusing on ex-
tending their local main memory to a special memory node with
large DRAMs or NVMs in the rack. Differently, Fargraph+ provides
an application-aware far memory optimization scheme, which is
more efficient than general-purpose far memory platforms.

System Support for Graph Processing. In general, there are
three types of graph processing frameworks. 1) In-memory graph
frameworks, such as Ligra [34], Cagra [51], GraphIt [53], and etc.
In memory frameworks process graphs after all the source data are
loaded into main memory [39]. 2) Out-of-core frameworks, such as
GridGraph [54], Mosaic [21], HUSGraph [44] process large graphs
with limited main memory and a large-capacity disk. Works with
out-of-core execution patterns [41,33] load each graph block into
the memory and process them streamingly. 3) Distributed frame-
works, such as GraM [43], Gemini [55], and Chaos [29], divide huge
graphs into several parts and process them with Map-Reduce-style
schemes. All of these works concentrate on the execution instead
of data partition, especially in the context of remote memory ac-
cess. Fargraph+ fills a critical void by enabling efficient graph pro-
cessing on RDMA-based far memory. It can be extended to further
support emerging applications like graph-structured cloud-native
applications [48,42,15,50] and graph-based ML/AI applications [40].

Parallel Graph Processing Management. Parallel graph pro-
cessing frameworks have different types of parallelism manage-
ment methods when serving requests in a multi-user environ-
ment. Congra [26] proposes a scheduling method of multiple
graph queries by collecting the memory bandwidth consumption
characteristics on the optimal CPU cores. Kim et al. [17] de-
vised methods for enabling efficient processing of multiple graph
queries using MapReduce. Xue et al. [47,46] supports concur-
rent graph processing queries and proposes a graph structure
sharing mechanism to avoid memory storage waste. Cgraph [52]
designs a correlations-aware execution model, together with a
core subgraph-based scheduling algorithm, to efficiently share the
graph structure data in cache/memory and their accesses. GC-
graph [45] shares the I/O access and processing of graph data
among the CGP jobs and adaptively schedules the loading of graph
data, which efficiently overcomes the I/O challenges in prior works.
Uni-address [1] demonstrated a new thread management scheme
which enables us to implement RDMA-based work stealing and
reduces virtual memory usage of thread migration. Fargraph+ ex-
plores multi-threading effects in far memory environment and im-
proves the efficiency of parallel graph processing.

RDMA-based Far Memory Acceleration. With kernel-bypass
and fast-messaging features, the RDMA card has been widely used
for speeding up remote memory access. For example, general-
purpose far memory is drawing increasing attention in recent years.
Infiniswap [13] proposes transparent remote memory paging based
on RDMA. It is also feasible for a virtual machine to access not
only its own isolated memory area but also DRAM-based ex-
ternal memory and RDMA-based far memory [20]. Since graph
computing has irregular memory access patterns, general-purpose
far memory acceleration schemes cannot achieve the best perfor-
mance. Consequently, designing application-specific far memory is
also gaining popularity. For example, GraM [43] processes graphs
with distributed computing, using RDMA to pass messages. FAM-
graph [49] offloads all graph edges to the remote disaggregated
memory to efficiently tier data between local and remote mem-
ory. Different from existing works, Fargraph+ manages transferable
data segments for graph workloads and optimizes graph process-
ing with tailored RDMA control.
157
12. Conclusion and discussion

In this paper, we explore graph processing on emerging far
memory architecture. We show that there are several challenges
and opportunities in deploying graph workloads on far memory.
We propose Fargraph+, an optimization strategy that allows one
to run graph applications on far memory in parallel efficiently.
The key novelty of Fargraph+ is three-folded, including the smart
graph-aware data segment offloading, the adaptive far memory in-
teraction and the efficient parallelism optimization. We implement
Fargraph+ based on the GridGraph framework and conduct a case
study to demonstrate its effectiveness. We show that Fargraph+ can
achieve up to 9.2× and 11.2× speedup compared to conventional
out-of-core graph processing framework and the state-of-the-art
general-purpose far memory platform, respectively. We expect that
our design will open a door for more efficient graph processing in
the next-generation cloud on disaggregated architecture.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Chao Li reports financial support was provided by Na-
tional Natural Science Foundation of China (No. 61832006 and
No. 61972247), and by Alibaba Innovative Research Program (No.
ATS54DHZ1210007).

Data availability

Data will be made available on request.

Acknowledgment

This work is supported in part by the National Natural Science
Foundation of China (No. 61832006 and No. 61972247), and by
Alibaba Innovative Research Program (No. ATS54DHZ1210007). We
thank all the anonymous reviewers for their valuable feedback.

References

[1] S. Akiyama, K. Taura, Uni-address threads: scalable thread management for
rdma-based work stealing, in: Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC), 2015,
pp. 15–26.

[2] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M.K. Aguilera, A. Panda, S.
Ratnasamy, S. Shenker, Can far memory improve job throughput?, in: European
Conference on Computer Systems (EuroSys), 2020, pp. 1–16.

[3] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou, Apollo:
scalable and coordinated scheduling for cloud-scale computing, in: USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014,
pp. 285–300.

[4] I. Calciu, M.T. Imran, I. Puddu, S. Kashyap, H. Al Maruf, O. Mutlu, A. Kolli,
Rethinking software runtimes for disaggregated memory, in: Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2021,
pp. 79–92.

[5] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-mat: a recursive model for graph min-
ing, in: SDM, 2004, pp. 442–446.

[6] E. Choukse, M.B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans, S.W. Keck-
ler, Buddy compression: enabling larger memory for deep learning and hpc
workloads on gpus, in: ACM/IEEE Annual International Symposium on Com-
puter Architecture (ISCA), 2020, pp. 926–939.

[7] C. Clark, K. Fraser, S. Hand, J.G. Hansen, et al., Live migration of virtual ma-
chines, in: USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2005, pp. 273–286.

[8] C.E.L. Corporation, Compute express link, https://www.computeexpresslink.org /
about -cxl, 2022.

[9] I. Corporation, Ibm power 9 cpu, https://www.ibm .com /it -infrastructure /power /
power9, 2022.

[10] M. Corporation, Mellanox interconnect community, https://community.
mellanox .com /s/, 2022.

[11] N. Corporation, Nvlink interconnect, http://www.nvidia .com /object /nvlink.html,
2022.

http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2546A98B4E4A77F33D64764B6BF0831Cs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2546A98B4E4A77F33D64764B6BF0831Cs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2546A98B4E4A77F33D64764B6BF0831Cs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2546A98B4E4A77F33D64764B6BF0831Cs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8ECB838AD016A81477D8B7B1888D13A2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8ECB838AD016A81477D8B7B1888D13A2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8ECB838AD016A81477D8B7B1888D13A2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib31F2385BA9CC65DBA7CCB9AA5C5B7600s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib31F2385BA9CC65DBA7CCB9AA5C5B7600s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib31F2385BA9CC65DBA7CCB9AA5C5B7600s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib31F2385BA9CC65DBA7CCB9AA5C5B7600s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0FDB79D70F37D24F53D60D49CD52D080s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0FDB79D70F37D24F53D60D49CD52D080s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0FDB79D70F37D24F53D60D49CD52D080s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0FDB79D70F37D24F53D60D49CD52D080s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib93AF3274C365A6E17A2CEA71175EE69Bs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib93AF3274C365A6E17A2CEA71175EE69Bs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibCFB6A8744618328994FFB5ADE61F3377s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibCFB6A8744618328994FFB5ADE61F3377s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibCFB6A8744618328994FFB5ADE61F3377s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibCFB6A8744618328994FFB5ADE61F3377s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E62DA255CCFE4FBB6F3009671E1FAD2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E62DA255CCFE4FBB6F3009671E1FAD2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E62DA255CCFE4FBB6F3009671E1FAD2s1
https://www.computeexpresslink.org/about-cxl
https://www.computeexpresslink.org/about-cxl
https://www.ibm.com/it-infrastructure/power/power9
https://www.ibm.com/it-infrastructure/power/power9
https://community.mellanox.com/s/
https://community.mellanox.com/s/
http://www.nvidia.com/object/nvlink.html

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
[12] A. Dragojević, D. Narayanan, M. Castro, O. Hodson, Farm: fast remote mem-
ory, in: USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014, pp. 401–414.

[13] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, K.G. Shin, Efficient memory disaggre-
gation with infiniswap, in: USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2017, pp. 649–667.

[14] N. Hjelm, M.G. Dosanjh, R.E. Grant, T. Groves, P. Bridges, D. Arnold, Improving
mpi multi-threaded rma communication performance, in: Proceedings of the
47th International Conference on Parallel Processing (ICPP), 2018, pp. 1–11.

[15] X. Hou, C. Li, J. Liu, L. Zhang, Y. Hu, M. Guo, Ant-man: towards agile power
management in the microservice era, in: International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC), 2020, pp. 1–14.

[16] F. Khorasani, R. Gupta, L.N. Bhuyan, Parmat, a multi-threaded rmat graph gen-
erator, https://github .com /farkhor /PaRMAT, 2022.

[17] S.-H. Kim, K.-H. Lee, H. Choi, Y.-J. Lee, Parallel processing of multiple graph
queries using mapreduce, in: The Fifth International Conference on Advances in
Databases, Knowledge, and Data Applications (DBKDA 2013), 2013, pp. 33–38.

[18] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J. Chang,
A. Chaugule, N. Deng, J. Shahid, et al., Software-defined far memory in
warehouse-scale computers, in: Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2019, pp. 317–330.

[19] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S.K. Reinhardt, T.F. Wenisch, Disag-
gregated memory for expansion and sharing in blade servers, in: International
Symposium on Computer Architecture (ISCA), 2009, pp. 267–278.

[20] L. Liu, W. Cao, S. Sahin, Q. Zhang, J. Bae, Y. Wu, Memory disaggregation: re-
search problems and opportunities, in: IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), 2019, pp. 1664–1673.

[21] S. Maass, C. Min, S. Kashyap, et al., Mosaic: processing a trillion-edge graph
on a single machine, in: European Conference on Computer Systems (EuroSys),
2017, pp. 527–543.

[22] J. Malicevic, B. Lepers, W. Zwaenepoel, Everything you always wanted to know
about multicore graph processing but were afraid to ask, in: USENIX Annual
Technical Conference (USENIX ATC), 2017, pp. 631–643.

[23] D. Montgomery, The future of data infrastructure: cdi, https://www.
datacenterknowledge .com /industry-perspectives /future -data -infrastructure,
2022.

[24] M. Ogleari, Y. Yu, C. Qian, E. Miller, J. Zhao, String figure: a scalable and elas-
tic memory network architecture, in: IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 647–660.

[25] L. OS, Linux frontswap, https://www.kernel .org /doc /html /latest /vm /frontswap .
html, 2022.

[26] P. Pan, C. Li, Congra: towards efficient processing of concurrent graph queries
on shared-memory machines, in: International Conference on Computer Design
(ICCD), 2017, pp. 217–224.

[27] P. Pan, C. Li, M. Guo, Congraplus: towards efficient processing of concurrent
graph queries on numa machines, IEEE Trans. Parallel Distrib. Syst. 30 (2019)
1990–2002.

[28] C. Pinto, D. Syrivelis, M. Gazzetti, et al., Thymesisflow: a software-defined,
hw/sw co-designed interconnect stack for rack-scale memory disaggregation,
in: The IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 868–880.

[29] A. Roy, L. Bindschaedler, J. Malicevic, W. Zwaenepoel, Chaos: scale-out graph
processing from secondary storage, in: Symposium on Operating Systems Prin-
ciples (SOSP), 2015, pp. 410–424.

[30] Z. Ruan, M. Schwarzkopf, M.K. Aguilera, A. Belay, Aifm: high-performance,
application-integrated far memory, in: USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2020, pp. 315–332.

[31] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: flexible,
scalable schedulers for large compute clusters, in: ACM European Conference
on Computer Systems (EuroSys), 2013, pp. 351–364.

[32] Y. Shan, Y. Huang, Y. Chen, Y. Zhang, Legoos: a disseminated, distributed os for
hardware resource disaggregation, in: USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2018, pp. 69–87.

[33] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, M. Guo, Oversubscribing gpu unified
virtual memory: implications and suggestions, in: ACM/SPEC International Con-
ference on Performance Engineering (ICPE), 2022, pp. 67–75.

[34] J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for
shared memory, in: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2013, pp. 135–146.

[35] M. Si, A.J. Pena, P. Balaji, M. Takagi, Y. Ishikawa, Mt-mpi: multithreaded mpi
for many-core environments, in: Proceedings of the 28th ACM International
Conference on Supercomputing (SC), 2014, pp. 125–134.

[36] S.-Y. Tsai, Y. Shan, Y. Zhang, Disaggregating persistent memory and controlling
them remotely: an exploration of passive disaggregated key-value stores, in:
USENIX Annual Technical Conference (USENIX ATC), 2020, pp. 33–48.

[37] K. University of Tennessee, A message-passing interface standard version 3.1,
https://www.mpi -forum .org /docs /mpi -3 .1 /mpi31 -report .pdf, 2022.

[38] J. Wang, C. Li, T. Wang, L. Zhang, P. Wang, J. Mei, M. Guo, Excavating the poten-
tial of graph workload on rdma-based far memory architecture, in: 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022,
pp. 1029–1039.
158
[39] P. Wang, L. Zhang, C. Li, M. Guo, Excavating the potential of gpu for acceler-
ating graph traversal, in: IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2019, pp. 221–230.

[40] P. Wang, C. Li, J. Wang, T. Wang, L. Zhang, J. Leng, Q. Chen, M. Guo, Skywalker:
efficient alias-method-based graph sampling and random walk on gpus, in: In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), 2021, pp. 304–317.

[41] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, M. Guo, Grus: toward unified-memory-
efficient high-performance graph processing on gpu, ACM Trans. Archit. Code
Optim. (2021).

[42] X. Wang, C. Li, L. Zhang, X. Hou, Q. Chen, M. Guo, Exploring efficient microser-
vice level parallelism, in: International Parallel and Distributed Processing Sym-
posium (IPDPS), 2022, pp. 1–10.

[43] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, L. Zhou, Gram:
scaling graph computation to the trillions, in: ACM Symposium on Cloud Com-
puting (SoCC), 2015, pp. 408–421.

[44] X. Xu, F. Wang, H. Jiang, Y. Cheng, D. Feng, Y. Zhang, Hus-graph: i/o-efficient
out-of-core graph processing with hybrid update strategy, in: International
Conference on Parallel Processing (ICPP), 2018, pp. 1–10.

[45] X. Xu, F. Wang, H. Jiang, Y. Cheng, D. Feng, Y. Zhang, P. Fang, Graphcp: an
i/o-efficient concurrent graph processing framework, in: 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS), IEEE, 2021, pp. 1–10.

[46] J. Xue, Z. Yang, Z. Qu, S. Hou, Y. Dai, Seraph: an efficient, low-cost system
for concurrent graph processing, in: Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing, 2014,
pp. 227–238.

[47] J. Xue, Z. Yang, S. Hou, Y. Dai, Processing concurrent graph analytics with de-
coupled computation model, IEEE Trans. Comput. 66 (2016) 876–890.

[48] P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, J. Xue, A locality-
aware energy-efficient accelerator for graph mining applications, in: IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 895–907.

[49] D. Zahka, A. Gavrilovska, Fam-graph: graph analytics on disaggregated mem-
ory, in: 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2022, pp. 81–92.

[50] L. Zhang, W. Feng, C. Li, X. Hou, P. Wang, J. Wang, M. Guo, Tapping into nfv
environment for opportunistic serverless edge function deployment, in: IEEE
Transactions on Computers (TC), 2021, pp. 1–10.

[51] Y. Zhang, V. Kiriansky, C. Mendis, et al., Making caches work for graph analyt-
ics, in: IEEE International Conference on Big Data (Big Data), 2017, pp. 293–302.

[52] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, H. Liu, Cgraph: a correlations-aware
approach for efficient concurrent iterative graph processing, in: 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 441–452.

[53] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J.
Shun, Optimizing ordered graph algorithms with graphit, in: The International
Symposium on Code Generation and Optimization (CGO), 2020, pp. 158–170.

[54] X. Zhu, W. Han, W. Chen, Gridgraph: large-scale graph processing on a single
machine using 2-level hierarchical partitioning, in: USENIX Annual Technical
Conference (USENIX ATC), 2015, pp. 375–386.

[55] X. Zhu, W. Chen, et al., Gemini: a computation-centric distributed graph pro-
cessing system, in: USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2016, pp. 301–316.

Jing Wang is a Ph.D. candidate at Shanghai Jiao
Tong University, China. Her current research interests
include computer architecture, disaggregated memory,
and graph processing.

Chao Li is a professor with tenure in the Depart-
ment of Computer Science and Engineering, Shanghai
Jiao Tong University. His primary research area is sys-
tem architecture design with an emphasis on energy-
efficient, high-performance computers of large scale.

Yibo Liu is working toward the Master degree
at Shanghai Jiao Tong University, China. His research
interests include disaggregated memory and graph-
structured analytics.

http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE67ED91B512D4579FAED79C9DD162F35s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE67ED91B512D4579FAED79C9DD162F35s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE67ED91B512D4579FAED79C9DD162F35s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2E8DF6ECAF136C214FEED047F3ADB8C2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2E8DF6ECAF136C214FEED047F3ADB8C2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib2E8DF6ECAF136C214FEED047F3ADB8C2s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD18FA9FF6772EA0978B0204FEE689C62s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD18FA9FF6772EA0978B0204FEE689C62s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD18FA9FF6772EA0978B0204FEE689C62s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E805AE6FD067367A9B205BB716669ECs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E805AE6FD067367A9B205BB716669ECs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib5E805AE6FD067367A9B205BB716669ECs1
https://github.com/farkhor/PaRMAT
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibDE31F8E2B802A0D2EEF3285B9816E51Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibDE31F8E2B802A0D2EEF3285B9816E51Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibDE31F8E2B802A0D2EEF3285B9816E51Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD9076846E7944083B0832B2AA7D784A4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD9076846E7944083B0832B2AA7D784A4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD9076846E7944083B0832B2AA7D784A4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD9076846E7944083B0832B2AA7D784A4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib4A50B00A4B4C089874EAC7F6A6760BD6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib4A50B00A4B4C089874EAC7F6A6760BD6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib4A50B00A4B4C089874EAC7F6A6760BD6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib6D03803B6E5C71B39C4A9C04A8B001DEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib6D03803B6E5C71B39C4A9C04A8B001DEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib6D03803B6E5C71B39C4A9C04A8B001DEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0964B5218635A1C51FF24543EE242514s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0964B5218635A1C51FF24543EE242514s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib0964B5218635A1C51FF24543EE242514s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib55A9A30A5ECFB7C2533A1F5A5B62EDB8s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib55A9A30A5ECFB7C2533A1F5A5B62EDB8s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib55A9A30A5ECFB7C2533A1F5A5B62EDB8s1
https://www.datacenterknowledge.com/industry-perspectives/future-data-infrastructure
https://www.datacenterknowledge.com/industry-perspectives/future-data-infrastructure
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib957C77873B690E98E30C7A48EAE9486Fs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib957C77873B690E98E30C7A48EAE9486Fs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib957C77873B690E98E30C7A48EAE9486Fs1
https://www.kernel.org/doc/html/latest/vm/frontswap.html
https://www.kernel.org/doc/html/latest/vm/frontswap.html
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8E21D3BBFC10456F5BCFDC3B7EB34F04s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8E21D3BBFC10456F5BCFDC3B7EB34F04s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8E21D3BBFC10456F5BCFDC3B7EB34F04s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8D8E72DA525CB8293D1864421BAAC72Bs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8D8E72DA525CB8293D1864421BAAC72Bs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8D8E72DA525CB8293D1864421BAAC72Bs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7ECBF29C3D2646683BC4A55EAE31DCA4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7ECBF29C3D2646683BC4A55EAE31DCA4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7ECBF29C3D2646683BC4A55EAE31DCA4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7ECBF29C3D2646683BC4A55EAE31DCA4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE922898342E5F93212D28406D9E7F706s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE922898342E5F93212D28406D9E7F706s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE922898342E5F93212D28406D9E7F706s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7C39CDB6A0B0C9E9EABD86BA6C4F7129s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7C39CDB6A0B0C9E9EABD86BA6C4F7129s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7C39CDB6A0B0C9E9EABD86BA6C4F7129s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC6D6BD7EBF806F43C76ACC3681703B81s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC6D6BD7EBF806F43C76ACC3681703B81s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC6D6BD7EBF806F43C76ACC3681703B81s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib77C1E6C3D4CA2D1EFDC712FBEDAA7454s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib77C1E6C3D4CA2D1EFDC712FBEDAA7454s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib77C1E6C3D4CA2D1EFDC712FBEDAA7454s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib35037FD2DE5CF9675711B3C8E002D88Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib35037FD2DE5CF9675711B3C8E002D88Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib35037FD2DE5CF9675711B3C8E002D88Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib76FEFA696D5795B2159181B3B971EFC6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib76FEFA696D5795B2159181B3B971EFC6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib76FEFA696D5795B2159181B3B971EFC6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE34EA4B9A1FBD75F48D69ABFC0CDDED3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE34EA4B9A1FBD75F48D69ABFC0CDDED3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibE34EA4B9A1FBD75F48D69ABFC0CDDED3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibED9A5A2FF94176D5EB0ADB0C2B84AA11s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibED9A5A2FF94176D5EB0ADB0C2B84AA11s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibED9A5A2FF94176D5EB0ADB0C2B84AA11s1
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD8CE20DABBE99CA592D78E58FA7D2BF6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD8CE20DABBE99CA592D78E58FA7D2BF6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD8CE20DABBE99CA592D78E58FA7D2BF6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibD8CE20DABBE99CA592D78E58FA7D2BF6s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib42347D50CA4092D2FBC7FAC632E7DFABs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib42347D50CA4092D2FBC7FAC632E7DFABs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib42347D50CA4092D2FBC7FAC632E7DFABs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibA7594BCB2F5F62DE65172C321A940384s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibA7594BCB2F5F62DE65172C321A940384s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibA7594BCB2F5F62DE65172C321A940384s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibA7594BCB2F5F62DE65172C321A940384s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8C1FF56865F52F7F87FE0F73BEA60188s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8C1FF56865F52F7F87FE0F73BEA60188s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib8C1FF56865F52F7F87FE0F73BEA60188s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1D3375B177B28BBF95DAB513B01D97B4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1D3375B177B28BBF95DAB513B01D97B4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1D3375B177B28BBF95DAB513B01D97B4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC5BC23DC24C013B95C88CF3AA7AB4E17s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC5BC23DC24C013B95C88CF3AA7AB4E17s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC5BC23DC24C013B95C88CF3AA7AB4E17s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7F7D91EF414B468507900AF32581A75Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7F7D91EF414B468507900AF32581A75Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib7F7D91EF414B468507900AF32581A75Ds1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC40C0E8E662D2D7AD032177B395F916As1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC40C0E8E662D2D7AD032177B395F916As1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC40C0E8E662D2D7AD032177B395F916As1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib779158E4B29D10D890C8B789DB8F1587s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib779158E4B29D10D890C8B789DB8F1587s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib779158E4B29D10D890C8B789DB8F1587s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib779158E4B29D10D890C8B789DB8F1587s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibB7D220AF2D877D67BCDF8F8C89557E09s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibB7D220AF2D877D67BCDF8F8C89557E09s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib14EF187EFA7ABD50018F243191A29272s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib14EF187EFA7ABD50018F243191A29272s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib14EF187EFA7ABD50018F243191A29272s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib13B627ECC3D68FAB96A8E8085DDD56A3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib13B627ECC3D68FAB96A8E8085DDD56A3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib13B627ECC3D68FAB96A8E8085DDD56A3s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC672451B73A297EC016FE544F739B99Es1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC672451B73A297EC016FE544F739B99Es1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bibC672451B73A297EC016FE544F739B99Es1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib3CCC1E07E09267194D516397F87FEFCCs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib3CCC1E07E09267194D516397F87FEFCCs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1FC6D18C60FB83C8612F69C46E035AEEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1FC6D18C60FB83C8612F69C46E035AEEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1FC6D18C60FB83C8612F69C46E035AEEs1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib3B27502D553ED9480CAD6FAC050137E4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib3B27502D553ED9480CAD6FAC050137E4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib3B27502D553ED9480CAD6FAC050137E4s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1E31734BC62687FB437069801916A385s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1E31734BC62687FB437069801916A385s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib1E31734BC62687FB437069801916A385s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib48BAFC503CBDBF5E49CA9725F980E241s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib48BAFC503CBDBF5E49CA9725F980E241s1
http://refhub.elsevier.com/S0743-7315(23)00034-5/bib48BAFC503CBDBF5E49CA9725F980E241s1

J. Wang, C. Li, Y. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 144–159
Taolei Wang is a Ph.D. student at Shanghai Jiao
Tong University, China. His current research area in-
cludes computer architecture, disaggregated memory
and cloud computing.

Junyi Mei is a Ph.D. student at Shanghai Jiao Tong
University, China. Her current research interests in-
clude computer architecture and graph processing.

Lu Zhang got his Ph.D. from Shanghai Jiao Tong
University, China. His research interests include edge
computing, network function virtualization and server-
less computing.

Pengyu Wang got his Ph.D. from Shanghai Jiao
Tong University, China. His research interests include
systems and architectures for graph processing and
graph neural network.

Minyi Guo is an IEEE fellow and a chair professor
in the Department of Computer Science and Engi-
neering of Shanghai Jiao Tong University, China. He
was the department head from 2009 to 2019. His re-
search area includes parallel and distributed process-
ing, compilers, cloud computing, pervasive computing,
software engineering, embedded systems; green com-
puting, etc.
159

	Fargraph+: Excavating the parallelism of graph processing workload on RDMA-based far memory system
	1 Introduction
	2 Background
	2.1 Far memory and its current issues
	2.2 Kernel-level and user-level FM
	2.3 Comparison of different execution models

	3 Design considerations
	3.1 Graph-aware opportunities
	3.2 RDMA efficiency issue
	3.3 Parallelism opportunities

	4 Overview
	5 The front-end: graph-aware data segment offloading
	5.1 Graph data segment grouping
	5.2 Flexible data segments offloading
	5.3 Parallel data segments fetching

	6 The back-end: iteration-friendly far memory access
	6.1 Data segment splitting
	6.2 Data segment buffering
	6.3 Parallel RDMA configuration

	7 The parallelism-oriented control
	8 Directive-like implementation
	8.1 Interfaces design
	8.2 Fargraph+ workflow

	9 Experimental setup
	9.1 Hardware environment
	9.2 Evaluated system strategies
	9.3 Evaluated graph workloads

	10 Results
	10.1 Overall performance
	10.2 Performance of parallelism control
	10.3 Performance of the front-end
	10.4 Performance of the back-end

	11 Related work
	12 Conclusion and discussion
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

