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ABSTRACT
Disaggregated architecture brings new opportunities to memory-
consuming applications like graph analytics. It allows one to out-
spread memory access pressure from local to far memory, providing
an attractive alternative to disk-based processing. In this paper,
we take the first step to analyze the impact of graph processing
workloads on disaggregated architecture. We design Fargraph, a
far memory coordination strategy for enhancing graph processing
workloads on top of RDMA-based far memory system.
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1 INTRODUCTION AND BACKGROUND
Nowadays various data-intensive applications such as graph pro-
cessing, machine learning, and data mining demand continued
research on better memory performance. An important trend is to
build disaggregated memory resource pools and enable far memory
(i.e., remote main memory) accesses [3]. Far memory system allows
one to opportunistically borrow memory resources from a remote
node (Figure 1 (a)) which provides a new option for scaling out
graph processing on both single-node (Figure 1 (b)) and distributed
computing (Figure 1 (c)). Far memory helps to outspread memory
flexibly as a good complementary of existing systems.

However, transparent far memory management may not pro-
vide the best performance. Far memory platforms often replace the
original swap space with far memory space [1, 2], passively leaves
all the pressure of deciding thrown-out parts to the OS kernel. This
system overhead becomes the main challenge for swap-based far
memory platform. On the other hand, one could miss great perfor-
mance optimization opportunities when accessing far memory in
a fine-grained, irregular manner [1]. Oftentimes, a graph consists
of small amounts of write-intensive vertices and large amounts
of read-only edges. We need to determine the appropriate data
segments that should be moved out to far memory.

In this paper, we take the first step to design a far memory coordi-
nation strategy for enhancing graph processing applications on top
of RDMA-based far memory system. We investigate far-memory
based graph programs from two aspects: working set partition and
far memory interaction. We identify data segments that are most
suitable to be placed on far memory. We also reconfigure the RDMA
back-end system to fit graph workloads better.

2 PRELIMINARY AND OBSERVATIONS
To show the opportunity of graph processing on far memory en-
vironment, we analyze the impact of far memory usage on task
latency in different scenarios. Specifically, we define a far memory
ratio 𝛼 , the ratio of far memory usage to all the memory occupation
of applications. The base in x axis refers to no cgroup baseline.
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Figure 1: Different architectures for far memory platforms.
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Figure 2: (a)-1/2/3: The runtime trends with growing far
memory ratios. b): Page access frequency over each page.

Figure 2-(a) shows the the system time and user time of different
applications on swap-based far memory platform Fastswap [1] with
different far memory usage ratio 𝛼 . We can see that the overhead
of Fastswap mainly comes from OS-level swap mechanism oper-
ations, which is more obvious when far memory ratio increases.
Additionally, we observe that graph programs have an obvious per-
formance turning point other than a continuous runtime increase in
Quicksort, a computation-intensive program. The latency increases
rapidly if far memory usage is larger than the turning point.

Graph has distinguishable working sets. Figure 2 b) counts the
read/write access number of each page in BFS. It shows edges are
often accessed less compared to vertex-related data while memory
occupation of edges is much larger than vertices. In addition, there
are some obvious page allocation areas of each data segment such
as parents of vertices, frontiers of vertices, edge lists, etc.

3 FARGRAPH DESIGN
Fargraph consists of two parts: the front-end working set partition
strategy and the back-end far memory interaction optimization,
as Figure 3 shows. The front-end mainly analyzes the memory
access patterns of graph programs and partition data between local
memory and remote memory. The back-end works cooperatively
to build up efficient memory interactions for the entire program.

3.1 Front-end: working set partition
The front-end has two primary steps. (1) Classification: We analyze
data segments of graph programs offline and classify them into
hot, warm and cold working sets. We treat the warm and cold
working sets to be transferable working sets (TWS) by default. (2)
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Figure 3: Fargraph platform overview.
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Figure 4: Working set partition.
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Partition: We determine data segments that are preferable to be
transferred to remote side in advance for each particular working
set. A straightforward idea is to keep hot segments locally and move
all the TWS to remote memory. However,to achieve a better trade-
off between local memory saving and far memory performance,
we define auto-tuning TWS, which means the size of TWS in local
memory is changeable. We allow one to keep part of the TWS in
local memory (as indicated in Figure 4). Most data segments of the
TWS in graph workloads are read-only (e.g., edges and attributes),
and we give high priority to the read-only data in our TWS.

3.2 Back-end: far memory interaction
In Fargraph back-end design, we optimize far memory access perfor-
mance based on appropriate configurations of RDMA. We explore
the benefits of RDMA from three key aspects below.

RDMA one-side read and write: Our far memory interaction can
bypass the kernel and communicate on event queues with user-level
RDMA read and write operations. RDMA one-sided read mecha-
nism allows one to directly fetch data from remote memory without
waiting for system handshaking.

Index configuration for data segments:We use indexes for fetching
remote data segments. It reduces the traversal cost of finding the
corresponding data segments in far memory. For example, we use
the vertex IDs of each grid block as the indexes of edges that are
stored in the far memory.

Proper size of data chunk transfer: We split each data segment
into multiple data chunks(finer-grained units) when writing to the
far memory, and merge these chunks back to the data segments
when fetching back. Since the size of each data segment is somehow
different, we transfer data based on an optimal size of the chunk.

Fargraph Workflow: In Figure 5, we show the workflow with
all optimization involved. There are two procedures on the active
(initiator client) side and the passive (responder server) side. The
key strategies are all implemented on the active side with the aid
of the passive side.

4 EVALUATION
We build our far memory platform based on two nodes with Dual-
Port Mellanox ConnectX-5 RDMANICs separately.We use Cgroup2
to limit the memory usage. The benchmark algorithms are BFS and
Pagerank in GridGraph [4] graph framework.We compare Fargraph
with the Original system (no far memory) and Fastswap platform.

As Figure 6 shows, Fargraph successfully reduces the runtime of
Fastswap[1] on BFS[4] . When the far memory ratio reaches 0.95,
we find that Fastswap is too slow to complete the execution even
after tens of minutes of execution. In Figure 7, we plot a smile-like
runtime curve of BFS on LiveJournal with various chunk size. Our
experiments show that we can obtain the best performance at 256KB
chunk size for each workload. The reason for the smile-like curve
is that the far memory chunk size is determined by the smaller one
between RDMA bandwidth and PCIe bandwidth. Comparing the
results of BSF and Pagerank in Figure 8, The speedup of Pagerank
is larger than BFS due to the ratio of computation and memory
access. The final result in Figure 8 shows that Fargraph can speedup
disk-swap Original baseline and Fastswap baseline by up to 7.1x.

5 CONCLUSION
In conclusion, graph processing can benefit from good working set
partition and proper RDMA tuning. We show that Fargraph has
great performance potential on far memory architecture. We will
continue to improve our design in the future work.
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