
Fargraph: Optimizing Graph Workload on RDMA-based Far
Memory Architecture

Jing Wang, Chao Li, Taolei Wang, Lu Zhang, Pengyu Wang, Junyi Mei, Minyi Guo
Shanghai Jiao Tong University

ABSTRACT
Disaggregated architecture brings new opportunities to memory-
consuming applications like graph analytics. It allows one to out-
spread memory access pressure from local to far memory, providing
an attractive alternative to disk-based processing. In this paper,
we take the first step to analyze the impact of graph processing
workloads on disaggregated architecture. We design Fargraph, a
far memory coordination strategy for enhancing graph processing
workloads on top of RDMA-based far memory system.

KEYWORDS
disaggregation, far memory, RDMA, graph processing, working set

1 INTRODUCTION AND BACKGROUND
Nowadays various data-intensive applications such as graph pro-
cessing, machine learning, and data mining demand continued
research on better memory performance. An important trend is to
build disaggregated memory resource pools and enable far memory
(i.e., remote main memory) accesses [3]. Far memory system allows
one to opportunistically borrow memory resources from a remote
node (Figure 1 (a)) which provides a new option for scaling out
graph processing on both single-node (Figure 1 (b)) and distributed
computing (Figure 1 (c)). Far memory helps to outspread memory
flexibly as a good complementary of existing systems.

However, transparent far memory management may not pro-
vide the best performance. Far memory platforms often replace the
original swap space with far memory space [1, 2], passively leaves
all the pressure of deciding thrown-out parts to the OS kernel. This
system overhead becomes the main challenge for swap-based far
memory platform. On the other hand, one could miss great perfor-
mance optimization opportunities when accessing far memory in
a fine-grained, irregular manner [1]. Oftentimes, a graph consists
of small amounts of write-intensive vertices and large amounts
of read-only edges. We need to determine the appropriate data
segments that should be moved out to far memory.

In this paper, we take the first step to design a far memory coordi-
nation strategy for enhancing graph processing applications on top
of RDMA-based far memory system. We investigate far-memory
based graph programs from two aspects: working set partition and
far memory interaction. We identify data segments that are most
suitable to be placed on far memory. We also reconfigure the RDMA
back-end system to fit graph workloads better.

2 PRELIMINARY AND OBSERVATIONS
To show the opportunity of graph processing on far memory en-
vironment, we analyze the impact of far memory usage on task
latency in different scenarios. Specifically, we define a far memory
ratio 𝛼 , the ratio of far memory usage to all the memory occupation
of applications. The base in x axis refers to no cgroup baseline.

(c) Distributed system

memory

Storage (as far memory)

CPU

Graph 
program

OS swap Kernel

Graph 
data

GP part 1

GD part 1

+ +

(b) Single-node system

GP: Graph Program 

GP part 2

GD part 2

GD: Graph Data 

RDMA

CPU

Far memory

RDMA

CPU

memory

(a) Far memory system

Graph program Graph data+

memory

CPU

RDMA RDMA

CPU

Far memoryOS swap 
Kernel

Figure 1: Different architectures for far memory platforms.

b
as

e 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

0
.9

9

Latency(seconds)

user time

sys time

real time

Quicksort50

46

42

38

34

30

b
as

e 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

user time
sys time
real time

360

320

280

240

400

420

(a) The latency trends of three workloads on along with 
growing far memory proportions. Ligra

(b) Page access times of data segments in 
graph processing programs Ligra-BFS.

Parents of Vertices

Edges

Frontiers of Vertices

Values of 
Vertices

Page 
Num.

17600 17800 18000 18200

70k

60k

50K

40k

30k

20k

10k

Number of Access

Ligra-PR-50

b
as

e 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

user time

sys time

real time

Ligra-BFS

140

60

180

100

200 Latency(seconds) Latency(seconds)

(a)-1 (a)-2 (a)-3 (b)

Read
Write00 0

Far
Ratio

Far
Ratio

Far
Ratio

Ligra-BFS

Figure 2: (a)-1/2/3: The runtime trends with growing far
memory ratios. b): Page access frequency over each page.

Figure 2-(a) shows the the system time and user time of different
applications on swap-based far memory platform Fastswap [1] with
different far memory usage ratio 𝛼 . We can see that the overhead
of Fastswap mainly comes from OS-level swap mechanism oper-
ations, which is more obvious when far memory ratio increases.
Additionally, we observe that graph programs have an obvious per-
formance turning point other than a continuous runtime increase in
Quicksort, a computation-intensive program. The latency increases
rapidly if far memory usage is larger than the turning point.

Graph has distinguishable working sets. Figure 2 b) counts the
read/write access number of each page in BFS. It shows edges are
often accessed less compared to vertex-related data while memory
occupation of edges is much larger than vertices. In addition, there
are some obvious page allocation areas of each data segment such
as parents of vertices, frontiers of vertices, edge lists, etc.

3 FARGRAPH DESIGN
Fargraph consists of two parts: the front-end working set partition
strategy and the back-end far memory interaction optimization,
as Figure 3 shows. The front-end mainly analyzes the memory
access patterns of graph programs and partition data between local
memory and remote memory. The back-end works cooperatively
to build up efficient memory interactions for the entire program.

3.1 Front-end: working set partition
The front-end has two primary steps. (1) Classification: We analyze
data segments of graph programs offline and classify them into
hot, warm and cold working sets. We treat the warm and cold
working sets to be transferable working sets (TWS) by default. (2)



Woodstock ’18, June 03–05, 2018, Woodstock, NY Jing Wang, et al.

Graph Applications/Frameworks

Local memory RDMA Far memory

FarGraph middleware

Frontend: WSP (Working Set Partition)

Backend: PPM-Local Backend: PPM-Remote

RDMA

C++ STL API, RDMA API, …

The modification

Graph Programs
(Frameworks)

Local memory RDMA Far memory

The Implementation

Frontend: WSP (Working Set Partition)

RDMA

L API, RDMA API, …C++ ST

Local master process (active side) Remote daemon (passive side)

Front-end: Graph-aware Working Set Partition

Back-end: RDMA-based Far Memory Interaction

Figure 3: Fargraph platform overview.

Partition

I/O pressure
Data segments Amount Classification

Write Read

Much Much
Vertex data, like ids, 
attributes, frontiers, etc. 

Small
Diligent set-1

(RMWM)

Much Few
Intermediate variable data, 
like iterators, pointers, etc.

Small
Diligent set-2

(RFWM)

Few Much
Read frequently data, like 
edge offsets, weights, etc.

Large
Medium set

(RMWF)

Few Few
Free and disposable data, 
like inactive vertices, etc.

Depends
Lazy set
(RFWF)

The resistant 
working sets 

L
o

ca
l s

id
e

R
em

o
te

 s
id

eThe 
auto-tuning 
transferable 
working sets

I/O pressure
Data segments Amount Classification

Write Read

Much Much
Vertex ids, attributes, 
frontiers, parents, etc. 

Small
Hot segments-1

(RMWM)

Much Few
Intermediate variables, 
iterators, etc.

Small
Hot segments-2

(RFWM)

Few Much
Edge blocks, edge 
offsets, weights, etc.

Large
Warm segments 

(RMWF)

Few Few
Disposable data, 
inactive vertices, etc.

Depend
Cold segments

(RFWF)

Local 
resistant 

working set

L
o

ca
l s

id
e

R
em

o
te

 s
id

e

The 
auto-tuning 
transferable 
working set

Partition

Figure 4: Working set partition.

B
u

il
d

 C
o

n
n

ec
ti

o
n

√

w
ai

t 
fo

r 
th

e 
n

ex
t 

P
as

si
ve

 s
id

e
A

ct
iv

e 
 s

id
e

Time

…

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒊+𝟏

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒊

×N

END

Finish

(a) Preprocess (b) One side read & Overleap
Far Memory Region

𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠

Far Memory Region

Start

Local 
Region

TWS

×

Far Memory 
Region

Far Memory 
Region

Phase1 Phase2 Phase3 Phase4

Local 
Region

Local 
Region

TWS

Figure 5: A four-phaseworkflow.

4.53 
3.78 3.75 3.75 3.73 3.65 3.34 3.32 

10.46 

14.79 

1.10 1.11 1.10 

3.45 
4.45 

6.68 

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Fastswap
Fargraph

Far ratio:

Latency (s) > 10min

Figure 6: The runtime comparison of
Fargraph and Fastswap under differ-
ent far memory proportion.

Rounds 23591733655164,12333K263K

Latency(seconds)

5.56 5.40 5.24 5.23 4.91 4.58 4.89 4.52 

3.45 
4.41 

8.12 

1024M512M256M128M64M32M16M2M256K32K4K4K4K

10

3

4

5

6

7

8

9

18.01(Original with disk)

10.46(Fastswap)

Chunk
Size

Figure 7: The performance of BFS on Far-
graph with different chunk sizes (com-
pared with 4K of Fastswap).

Far ratio=0.8
Chunk size=256K

LiveJournal Orkut Twitter Friendster

Size=1.08G Size=1.77G Size=26.27G Size=32.36G

Original BFS(Gridgraph) 9.84s 6.08s 235.91s 637.17s

BFS+Fastswap 10.46s 7.03s 262.24s 639.00s

BFS+Fargraph 3.45s 4.53s 75.61s 107.40s

Speedup(Fargraph/Fastswap) 3.0x 1.6x 3.5x 5.9x

Original Pagerank(Gridgraph) 39.20s 74.80s 848.00s 1153.60s

Pagerank+Fastswap 25.53s 40.80s 966.03s 1662.00s

Pagerank+Fargraph 7.44s 26.80s 153.19s 233.63s

Speedup(Fargraph/Fastswap) 3.4x 1.5x 6.3x 7.1x

Figure 8: The total runtime compari-
son of 8workloads on no-far-memory
and Fastswap baselines.

Partition: We determine data segments that are preferable to be
transferred to remote side in advance for each particular working
set. A straightforward idea is to keep hot segments locally and move
all the TWS to remote memory. However,to achieve a better trade-
off between local memory saving and far memory performance,
we define auto-tuning TWS, which means the size of TWS in local
memory is changeable. We allow one to keep part of the TWS in
local memory (as indicated in Figure 4). Most data segments of the
TWS in graph workloads are read-only (e.g., edges and attributes),
and we give high priority to the read-only data in our TWS.

3.2 Back-end: far memory interaction
In Fargraph back-end design, we optimize far memory access perfor-
mance based on appropriate configurations of RDMA. We explore
the benefits of RDMA from three key aspects below.

RDMA one-side read and write: Our far memory interaction can
bypass the kernel and communicate on event queues with user-level
RDMA read and write operations. RDMA one-sided read mecha-
nism allows one to directly fetch data from remote memory without
waiting for system handshaking.

Index configuration for data segments:We use indexes for fetching
remote data segments. It reduces the traversal cost of finding the
corresponding data segments in far memory. For example, we use
the vertex IDs of each grid block as the indexes of edges that are
stored in the far memory.

Proper size of data chunk transfer: We split each data segment
into multiple data chunks(finer-grained units) when writing to the
far memory, and merge these chunks back to the data segments
when fetching back. Since the size of each data segment is somehow
different, we transfer data based on an optimal size of the chunk.

Fargraph Workflow: In Figure 5, we show the workflow with
all optimization involved. There are two procedures on the active
(initiator client) side and the passive (responder server) side. The
key strategies are all implemented on the active side with the aid
of the passive side.

4 EVALUATION
We build our far memory platform based on two nodes with Dual-
Port Mellanox ConnectX-5 RDMANICs separately.We use Cgroup2
to limit the memory usage. The benchmark algorithms are BFS and
Pagerank in GridGraph [4] graph framework.We compare Fargraph
with the Original system (no far memory) and Fastswap platform.

As Figure 6 shows, Fargraph successfully reduces the runtime of
Fastswap[1] on BFS[4] . When the far memory ratio reaches 0.95,
we find that Fastswap is too slow to complete the execution even
after tens of minutes of execution. In Figure 7, we plot a smile-like
runtime curve of BFS on LiveJournal with various chunk size. Our
experiments show that we can obtain the best performance at 256KB
chunk size for each workload. The reason for the smile-like curve
is that the far memory chunk size is determined by the smaller one
between RDMA bandwidth and PCIe bandwidth. Comparing the
results of BSF and Pagerank in Figure 8, The speedup of Pagerank
is larger than BFS due to the ratio of computation and memory
access. The final result in Figure 8 shows that Fargraph can speedup
disk-swap Original baseline and Fastswap baseline by up to 7.1x.

5 CONCLUSION
In conclusion, graph processing can benefit from good working set
partition and proper RDMA tuning. We show that Fargraph has
great performance potential on far memory architecture. We will
continue to improve our design in the future work.

REFERENCES
[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout,

Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020.
Can far memory improve job throughput?. In EuroSys. 1–16.

[2] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. 2017. Efficient memory disaggregation with infiniswap. In NSDI. 649–667.

[3] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. Legoos: A
disseminated, distributed OS for hardware resource disaggregation. In OSDI’18.

[4] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
ATC. 375–386.


	Abstract
	1 Introduction and Background
	2 Preliminary and Observations
	3 FarGraph Design
	3.1 Front-end: working set partition
	3.2 Back-end: far memory interaction

	4 Evaluation
	5 Conclusion
	References

