Fargraph: Optimizing Graph Workload on RDMA-based Far Memory Architecture

Jing Wang, Chao LI*, Taolel Wang, Lu Zhang, Pengyu Wang, Junyi Mel, Minyi Guo
Shanghai Jiao Tong University

Fargraph Design Exprimental Evaluation

Introduction & Background

Disaggregated architecture[1] brings new opportunities to memory-consuming Fargraph Overview p— Table 1: Real graph datatsets
a I. I Ik h I I b b I f d Frl:lmewgrks] Front-end: Graph-aware Working Set Partition The far Mmeimo rV platform
pplications like graph analytics by borrowing memaory Trom a remote node.] .. L)) _
) i f i N * The front-end Proposes a Worklng set partition Themodification | | Back-end: ROMA-based Far Memory Interaction Graph Label Real graph |V| E| Edge Size environment:

- Far me_mory syster_n provides a neW option for _Sca Ing out grap strategy for graph programs. " “The Tmplementation” """ :) Live Journal 4847571 68,993,773 1.08G » Original(Gridgraph[3])

processing on both single-node and distributed-computing system. [Local master process activeside)] [Remote daemon (passiveside)] OR Orkut 3,072,441 117,185,083 177G o Gridgraph+Fastswap[2]
. i i _ _ _ | [ceswarrromaar.. | | W Twitter7 17,069,982 476,553,560 26.27G . :

OS swap mechanism can be leveraged to design transparent far memory « The back-end designs far memory interaction . ! : FR Friendster 65,608,366 1,806,067,135 32.36G Gridgraph+Fargraph

Local memory ﬁ RDMA <:|'> RDMA Far memory

Fig 3: The overview of Fargraph platform organization.

access on RDMA, such as Infiniswap[4] and Fastswap[2].

GP: Graph Program

optimization for far memory access. _ _ :
There are 4 datasets in our experiment. The benchmark algorithms are BFS and PageRank.

GD: Graph Data

pf;’;ﬂ‘m Ggaph GP part 1 GP part 2
ata . ey ®
GD part 1 GD part 2 Fargraph Front-end: working set partition 9
Latency (s > 10min Latency(s)
cPo = L 1/0 pressure Dat . amount | Classificats Partition 12 ‘E ____________ BFS-----ooooeo 479 ‘ $ 18.01(Original with disk)
p— (1) Classification: We analyze data Write Read I o | Fastswap . o] G4 106(Fastswap)
o memory Far memory segments of graph programs offline and on Voo ammies o, [et | £ 10 | ==Fargraph § 812
I 1 ’ T - working set 8 !)
Storage (asfarmemory)w —»4—* CIaSSIfy them IﬂtO hOt’ Warm and COId Much Few Intermediate variables, Small Hot segments-2 3 6 L 5 668 Z 523 524 540 556
0 bistributed working sets, as shown in Fig 4. lterators, etc e % o 1[5 378 375 375 373 365 334 332 s 5 w42 189 450 AL
(a) Far memory system (b) Single-node system c) Distributed system ..) Edge blocks. edge Warm segments The G [l E 4 3.4 5. 7}
. . . . 2) Partition: We determine data Few — Much o5 00 S8 Large > auto-tuning (-2 2 - .
Fig 1: Different architectures that can be leveraged for graph processing. (2) LS W Gl (RMWE) 1 transferable | £ 0 L Ch3nk I8
SegmentS that are prEferable to be tew pey Disposable data bepend Cold segments working set | & Farratic0) 01 02 03 04 05 06 07 08 09 095 COS4K 4K 4K 32K 256K 2M 16M 32M 64M 128M 256M 512M 1024M
We take the first step to design a far memory coordination strategy for enhancing transferred to remote side in advance nactive vertices, etc. (REWE)

Result 2: We plot a smile-like runtime curve of
BFS on LiveJournal with various chunk size. Our
experiments show that we can obtain the best
performance at 256KB for each workload.

Result 1: Fargraph successfully reduces
the latency when using far memory,
Improving performance by up to 4x
compared to Fastswap.

Fig 4: The data segments classification and working set partition strategy.

graph processing applications on top of RDMA-based far memory system. for each particular working set.

Auto-tuning Transferable Working Set (TWS):

Preliminary & Observations « We give high priority to the read-only data in the transferable working set.
« The local and remote proportion of TWS is auto-tuning accordingly.

‘[..atency[seconds] ' 200! Latency(seconds) 420 Latency(seconds) 70k} Nlllmb?r ofﬂlt.ccess L |
50 Quicksort 'l 180 Ligra-BFS 400 Ligra-PR-50 60k i i k},gl:lijiser:b of‘ienic(js
46 —2;::.2?;8 .:'_-' _:;SEIU?;:E oo s erne] cox] i 1: ‘:'_? i Fa rgraph Back-end: far memory interaction Table 2: The total latency comparison of graph workload execution on with 80% far memory and 256K Chunk size.
42| e real time - 400 ... real time d _ sysl gne 40k I | : I I |
real time {Parents|of Vertices ¥ ' : :
ey i | Values of] - - Far ratio=0.8 Chunk size=256K BES PageRank
Illl I I | | ‘ 30K E i.iges—,i ‘i’ms Key 1: RDMA One-side Read and Wr_lte']] LiveJournal Orkut Twitter Friendster | LiveJournal Orkut Twitter Friendster
1111k 20k ' pstateRs ﬁ - We use user-level RDMA read and write operations to avoid the kernel overhead. Original (Gridgraph) 9.84 608 23591 637.17 39.20 7480 848.00 1153.60
i Lot i s 10k L4 : i Gridgraph + Fastswap 10.46 703 262.24 639.00 25.53 40.80 966.03 1662.00
PR Page 17600 17800 18000 18200 .
N o Key 2: !ndex configuration for data segments. _ Gridgraph + Fargraph 3.45 453 7561 107.40 7.44 26.80 153.19 233.63
We set indexes for each data segment to reduce the cost of calling data from far memory. Speedup (Fastswap) 3.0x 1.6x 3.5x 5.9x 3.4x 1.5x 6.3x 7.1x

Fig 2: a)-1/2/3 are the runtime trends of three workloads on growing far memory proportions. b) is

r/w access number over each page and shows distinguished data segments of graph programs. Key 3: Proper size of data chunk transfer.

:) . _ _ Our Fargraph is more efficient than disk-swap Original baseline and Fastswap baseline.
We transfer data based on a finer-grained unit data chunk and choose the optimal size of the chunk. Jrap b T P

Comparing the results of BSF and Pagerank, the speedup of Pagerank is larger than BFS.

Conclusion Reference

Task Runtime Analysis by changing far memory ratio in Fig2-(a)-1/2/3

« Observationl: The overhead of far memory runtime mainly comes from Fargraph Workflow: optimizing graph processing on far memory

OS-level swap, which is more serious with far memory ratio increasing. e —) \ xN
. ; . ; ; : Preprocess Start Iteration; Finish . - : : -
Observatlon?. Graph tasks show turnlpg p_omts _Of latency trend_s, different Phase 1: Register memory regions and bind o T e : T In this paper we explore graph processing on RDMA [Zlgar:gZh205188hate;)ug:'n%g::§enr%'in;(t!gn dci:sht(r?inb’ufer:jd c\)(;yufr:)%
from the continuous trends of computation-intensive program Quicksort. P address to start connection [ipr<uilis S U based far memory architecture. e reseurce divacaresation, IMOSDI-15
' . @ . X ° i i i [2] Emmanuel Amaro, Christopher Branner-Augmon,
Phase 2: Pre-Transfer the data Segments N g Reglon END Graph processing can benefit from gOOd WOrklng Zhihong Luo, Amy Ouster-hout, Marcos K Aguilera, Aurojit

Panda, Sylvia Ratnasamy, and Scott Shenker.2020. Can far

Graph Working Set Analysis by counting page access number in Fig2-(b) set partition when deploying on far memory.

memory improve job throughput?. InEuroSys’20. 1-16

TWS to far memory and start local access.

Build Connection

wait for the next

. ObservgtlonS. Edges are pften accessc_ed less compared to vgrtex-related Phase 3- One-sided read/write to send and - » | e | » Tuning critical metrics on RDMA properly brings 3 iaowd 21, Wenigo Han, ana enguang. Chen
data while memory occupation of edges is much larger than vertices. fetch data in each iteration 2 | Reglon Far MemorYRegwﬂ Region | .l, performance chances for far memory access. GridGraph: Large-scale graph processing on a single machine

« Observation4: Graph shows obvious page allocation areas of each data . . . < e« \We can speedup the state-of-the-art far memor l[J:]m.gJu;];\:gngIgﬁri((;ﬁigrrfgc;r:o&g,g'\(iwen Zhang, Mosharaf
Phase 4: Finish and disconnection. | Phasel | Phase2 | Phase3 | Phase4 | P P y Chowdhury, and Kang GShin. 2017. Efficient memory

segment such as parents of vertices, frontiers of vertices, edge lists, etc.

Fig 5: The four phases of Fargraph workflow.

platform Fastswap by up to 7.1x.

disaggregation with Infiniswap. In NSDI’17. 649-667

