
Introduction & Background

Fargraph Overview

• The front-end proposes a working set partition

strategy for graph programs.

• The back-end designs far memory interaction

optimization for far memory access.

Jing Wang, Chao Li*, Taolei Wang, Lu Zhang, Pengyu Wang, Junyi Mei, Minyi Guo

Shanghai Jiao Tong University

Fargraph: Optimizing Graph Workload on RDMA-based Far Memory Architecture

Disaggregated architecture[1] brings new opportunities to memory-consuming

applications like graph analytics by borrowing memory from a remote node.

In this paper we explore graph processing on RDMA

based far memory architecture.

• Graph processing can benefit from good working

set partition when deploying on far memory.

• Tuning critical metrics on RDMA properly brings

performance chances for far memory access.

• We can speedup the state-of-the-art far memory

platform Fastswap by up to 7.1x.

Phase 1: Register memory regions and bind

IP address to start connection.

Phase 2: Pre-Transfer the data segments in

TWS to far memory and start local access.

Phase 3: One-sided read/write to send and

fetch data in each iteration.

Phase 4: Finish and disconnection.

Fig 1: Different architectures that can be leveraged for graph processing.

Preliminary & Observations

Fargraph Design Exprimental Evaluation

Conclusion Reference

Task Runtime Analysis by changing far memory ratio in Fig2-(a)-1/2/3

• Observation1: The overhead of far memory runtime mainly comes from

OS-level swap, which is more serious with far memory ratio increasing.

• Observation2: Graph tasks show turning points of latency trends, different

from the continuous trends of computation-intensive program Quicksort.

Graph Working Set Analysis by counting page access number in Fig2-(b)

• Observation3: Edges are often accessed less compared to vertex-related

data while memory occupation of edges is much larger than vertices.

• Observation4: Graph shows obvious page allocation areas of each data

segment such as parents of vertices, frontiers of vertices, edge lists, etc.

Fargraph Front-end: working set partition

Fargraph Back-end: far memory interaction

Fig 2: a)-1/2/3 are the runtime trends of three workloads on growing far memory proportions. b) is

r/w access number over each page and shows distinguished data segments of graph programs.

Fig 3: The overview of Fargraph platform organization.

Fig 4: The data segments classification and working set partition strategy.

Fig 5: The four phases of Fargraph workflow.

• Far memory system provides a new option for scaling out graph

processing on both single-node and distributed-computing system.

• OS swap mechanism can be leveraged to design transparent far memory

access on RDMA, such as Infiniswap[4] and Fastswap[2].

(1) Classification: We analyze data

segments of graph programs offline and

classify them into hot, warm and cold

working sets, as shown in Fig 4.

(2) Partition: We determine data

segments that are preferable to be

transferred to remote side in advance

for each particular working set.

Key 3: Proper size of data chunk transfer.

We transfer data based on a finer-grained unit data chunk and choose the optimal size of the chunk.

Fargraph Workflow: optimizing graph processing on far memory

Key 1: RDMA One-side Read and Write.

We use user-level RDMA read and write operations to avoid the kernel overhead.

We take the first step to design a far memory coordination strategy for enhancing

graph processing applications on top of RDMA-based far memory system.

Auto-tuning Transferable Working Set (TWS):

• We give high priority to the read-only data in the transferable working set.

• The local and remote proportion of TWS is auto-tuning accordingly.

Result 1: Fargraph successfully reduces

the latency when using far memory,

improving performance by up to 4x

compared to Fastswap.

Our Fargraph is more efficient than disk-swap Original baseline and Fastswap baseline.

Comparing the results of BSF and Pagerank, the speedup of Pagerank is larger than BFS.

The far memory platform

environment:

• Original(Gridgraph[3])

• Gridgraph+Fastswap[2]

• Gridgraph+Fargraph

There are 4 datasets in our experiment. The benchmark algorithms are BFS and PageRank.

BFS

Result 2: We plot a smile-like runtime curve of

BFS on LiveJournal with various chunk size. Our

experiments show that we can obtain the best

performance at 256KB for each workload.

[1] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. 2018. Legoos: Adisseminated, distributed OS for

hardware resource disaggregation. InOSDI’18

[2] Emmanuel Amaro, Christopher Branner-Augmon,

Zhihong Luo, Amy Ouster-hout, Marcos K Aguilera, Aurojit

Panda, Sylvia Ratnasamy, and Scott Shenker.2020. Can far

memory improve job throughput?. InEuroSys’20. 1–16

[3] Xiaowei Zhu, Wentao Han, and Wenguang Chen.

GridGraph: Large-scale graph processing on a single machine

using 2-level hierarchical partitioning.

[4] . Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf

Chowdhury, and Kang GShin. 2017. Efficient memory

disaggregation with Infiniswap. In NSDI’17. 649–667

Key 2: Index configuration for data segments.

We set indexes for each data segment to reduce the cost of calling data from far memory.

