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Introduction & Background
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Fig 3: The overview of Fargraph platform organization.

access on RDMA, such as Infiniswap[4] and Fastswap[2].

GP: Graph Program

optimization for far memory access. _ _ :
There are 4 datasets in our experiment. The benchmark algorithms are BFS and PageRank.
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Result 2: We plot a smile-like runtime curve of
BFS on LiveJournal with various chunk size. Our
experiments show that we can obtain the best
performance at 256KB for each workload.

Result 1: Fargraph successfully reduces
the latency when using far memory,
Improving performance by up to 4x
compared to Fastswap.

Fig 4: The data segments classification and working set partition strategy.

graph processing applications on top of RDMA-based far memory system. for each particular working set.

Auto-tuning Transferable Working Set (TWS):

Preliminary & Observations « We give high priority to the read-only data in the transferable working set.
« The local and remote proportion of TWS is auto-tuning accordingly.
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Fig 2: a)-1/2/3 are the runtime trends of three workloads on growing far memory proportions. b) is

r/w access number over each page and shows distinguished data segments of graph programs. Key 3: Proper size of data chunk transfer.

: ) . _ _ Our Fargraph is more efficient than disk-swap Original baseline and Fastswap baseline.
We transfer data based on a finer-grained unit data chunk and choose the optimal size of the chunk. Jrap b T P

Comparing the results of BSF and Pagerank, the speedup of Pagerank is larger than BFS.
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Fig 5: The four phases of Fargraph workflow.
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