
94 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

Data centers, especially the large ones, are con-
stantly seeking to optimize their resource uti-
lization. With scale comes increasing pressure
to get the most out of one’s hardware. The re-

quirement to use compute resources more efficiently, for
instance, led to the widespread use of virtual machines
running on servers and, more recently, to creating virtual
machines or containers utilizing disaggregated (separated)
storage and networking components. Disaggregation usu-
ally results in interconnected pools of computer resources,
such as processors, networks, and storage, which can then

be reaggregated using software to
configure virtual machines or con-
tainers for running various processes.
The software-based combination of
pooled computer resources is also
known as composable infrastructure.

Storage pooling today focuses
on using nonvolatile memory ex-
press (NVMe) running on fabrics
(NVMe-oF), allowing arrays of sol-
id-state drives (SSDs) in a storage
pool that can then be assigned to
provide storage for containers or vir-
tual machines that can be spun up

and down at will, resulting in a much higher utilization
of storage resources. New memory networking standards
are now making it possible to disaggregate memory be-
yond today’s direct connection to a CPU toward memory
pools that can be shared on an interconnection network
and allocated as part of a data center’s composable infra-
structure. Let’s examine these developments, which will
help future data centers tame their memory needs.

In 2016, Rao and Porter1 found memory disaggregation
over traditional networks favorable for Apache Spark’s
memory-intensive and highly partitionable workloads. In
2017, Barroso et al.2 anticipated the changing access char-
acteristics of data in data centers and encouraged software
developers to address a gap in their stacks when it came to

Taming Memory
With Disaggregation
Pankaj Mehra , Elephance Memory

Tom Coughlin , Coughlin Associates

The Compute Express Link (CXL), a trademark of

the CXL Consortium, protocol enables creating

pools of memory and accelerators, allowing

memory disaggregation, and composable

virtual machines that make more efficient use of

memory. New software will make CXL memory

pools even more useful.

Digital Object Identifier 10.1109/MC.2022.3187847
Date of current version: 29 August 2022

MEMORY AND STORAGE

S E P T E M B E R 2 0 2 2 95

EDITOR TOM COUGHLIN
Coughlin Associates; tom@tomcoughlin.com

accessing data that was approximately
1 µs away. A form of disaggregating
memory was possible even before Rao
and Porter’s work. Hardware proposals
for stand-alone memory blades4 antic-
ipated many of the aspects of modern
memory disaggregation fabrics.

In 2019, the Compute Express Link
(CXL) Consortium was formed to create
standards for disaggregating memory
and creating memory pools indirectly
connected to CPUs. In November 2020,
the CXL Consortium released its 2.0
specification.3 The CXL 3.0 specification
release is expected sometime in 2022.
CXL runs on the Peripheral Component
Interconnect Express (PCIe) bus and
uses advances in serial link technology
(such as high-speed SerDes) and the de-
cades-old idea that a handful of serial
links, each forming a lane of 4×-to-16×-
wide serial links, can serve as a sys-
tem-expansion interconnect. CXL-en-
abled systems are expected by the end of
2022 or early 2023, based upon the latest
PCIe specification, generation 5.

CXL makes protocol-layer enhance-
ments to PCIe that make it especially
apt for memory attachment. First, it
allows long input–output (I/O) packets
and short cache-line grain accesses to
share the same physical link by sup-
porting arbitration at the flow-digit
level so that load–store operations
and I/O direct memory access (DMA)
operations can share the same phys-
ical link without memory accesses
incurring exorbitant latencies due to
I/O Transport Layer packets crossing
switch ports in front of memory data.
Second, it specifies coherence proto-
cols that allow caches and buffers to
be coherently connected to processors
inside a disaggregated heterogeneous
system composed of both traditional
elements, such as general-purpose
CPUs with their tightly coupled mem-
ory devices, and novel elements, such
as far memory and domain-specific
accelerators (field-programmable gate

a r rays, GPUs, and coarse-grained re-
configurable arrays with highly inte-
grated static random-access memory or
high-bandwidth memory dynamic ran-
dom-access memory). Figure 1 shows
some CXL pooling approaches.

FROM IN-SERVER AND
DISTRIBUTED MEMORY TO
DISAGGREGATED MEMORY
Each generation of CXL will allow mem-
ory to be deployed farther from the CPU
with increasing flexibility in terms of
the capacity deployed, the dynamic
configuration of host memory capacity,
and the number of hosts able to share
and efficiently access fabric-attached
memory. The benefits of this are best
understood in contrast with the tradi-
tional bespoke deployment of dual in-
line memory modules (DIMMs) on the
double-data-rate (DDR) buses of CPU
sockets, each socket exposing four, six,
or even eight DDR channels and allow-
ing two (lately just one because of ca-
pacitive loading) DIMMs per channel.

Those CPUs were interconnected
via a switched or point-to-point sym-
metric coherency fabric that allowed
uniform or nonuniform latency of load–
store access to each other’s memory.
The lanes of PCIe emanated from CPU
sockets separately, often with 96 or 128
lanes per socket, and were routed to
I/O devices, such as network interface

cards (NICs) or SSDs, with or without
switches and retimers on the back-
plane or midplane. In other words, the
CPUs were attached to memory in one
way and to I/O in another.

Because of the disaggregation of I/O,
first providing access to storage over
Fibre Channel and IP networks in the
1990s and subsequently using the more
expensive NICs and SmartNICs (Xsigo,
VirtenSys, and Mellanox Multihost NICs)
during the 2000s and 2010s, PCIe was
created to meet the need for system-ex-
pansion fabrics capable of supporting re-
mote DMA (RDMA). Although CPUs and
their application software also adopted
RDMA for efficient interprocessor com-
munication, the heavy software path of
setting up and tearing down the memory
registrations required for safe, zero-copy
RDMA and the heavy queue-pair-based
issue and completion paths of RDMA
read and write operations remind one
more of storage protocols (such as NVMe)
than of memory access. By contrast, it is
expected that even the higher CXL la-
tencies (compared to DIMMs) will be an
order of magnitude lower than the lower
RDMA read round-trip time.

DISAGGREGATION-RELATED
TRENDS AND THEIR
IMPLICATIONS
Some of the implications of memory
disaggregation are similar to those

EDITOR TOM COUGHLIN
Coughlin Associates; tom@tomcoughlin.com

Figure 1. CXL memory/accelerator pooling approaches. (Courtesy of the CXL Consortium.)

Memory/Accelerator Pooling With
Single Logical Devices

Memory Pooling With
Multiple Logical Devices

CXL 2.0 Switch CXL 2.0 Switch

H1 H2 H3 H4 H# H1 H2 H3 H4 H#

D1 D2 D3 D4 D# D1 D2 D3 D4 D#

Standardized CXL Fabric Manager

96 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

MEMORY AND STORAGE

of storage disaggregation in the late
1990s. When any resource decouples
from a host server, it must be managed
differently. Starting with power-up
and boot, there are fewer ordering
g uarantees over t he power-up se-
quence across disaggregated compo-
nents. Because of the independence of
procurement and decommissioning of
resources and also because of indepen-
dent failures, there are fewer assur-
ances of coavailability.

On the positive side, one may now in-
dependently scale components that pre-
viously could not be. The independent
manageability required of the freshly
disaggregated components creates an
opportunity for value-added services.
For instance, storage arrays developed
many new software-based capabilities
not previously available in hard disk
drives, such as snapshots, cloning, and
thin provisioning, to name a few. We
likewise expect disaggregated mem-
ory nodes to evolve from devices into
subsystems with a growing list of novel
software-based capabilities.

Independent scaling of computa-
tion and memory is to be contrasted
with homogeneous scale-out, where
the sins of bespoke memory deploy-
ment were compounded by eager
overprovisioning and the inability to
acquire more memory without the cost
and latency of additional processors.

Moreover, the economic impact of
bespoke memory deployment runs deep
in today’s data centers. First, memory
has now become the costliest element
of a data center server’s bill of materi-
als, accounting for as much as 50% of
the overall cost compared with 25% in
2009.4 For this reason, as many as five to
seven server stock keeping units (SKUs)
are commonly found in a 100,000-server
cloud data center, mainly differing in
their memory capacity. The use of these
fixed SKUs can result in up to 34% of
memory capacity remaining idle.

Second, because of the inability to
dynamically grow the memory capacity
of a server to match demand, applica-
tions are forced to consider either toler-
ating out-of-memory errors or moving

their data to larger instances, just when
the footprint of their state is at its peak,
neither of which is particularly palat-
able to modern DevOps.

Third, as if that weren’t enough
trouble, the capacity needs of ap-
plications vary wildly.4 Speaking at
the Fifth International Symposium
on Heterogeneous Integration, John
Shalf, the CTO of the National Energy
Research Scientific Computing Center,
has observed that server workloads
use less than 25% of their memory, 75%
of the time.5 So wasteful is bespoke de-
ployment of memory in the data cen-
ter that a resource that is procured by
data center operators at approximately
US$4/gigabyte is then rented out to
cloud service operators at approxi-
mately US$22–US$30/gigabyte/year,
probably to make up for the losses in a
poorly architected value chain.

In their 2022 Architectural Sup-
port for Programming Languages and
Operating Systems conference article,
Microsoft Azure researchers6 estimate
that they can save approximately 10%
of overall memory cost by placing just
the cold pages (infrequently accessed
provisioned memory) in a CXL-based
far-memory tier shared between 16 and
32 servers.

INDUSTRY’S ROAD MAP OF
MEMORY DISAGGREGATION
Given that the demand for memory
keeps rising because of the growth of
memory-intensive workloads, archi-
tects will need to get much more ag-
gressive about leveraging memory as
a far, fungible, and shared resource.
There has been some recognition that
bottom-up hardware developments,
such as CXL, are merely a first step in
the right direction. The guidance of
Barroso et al.2 is that software needs
to evolve for more workloads (than just
Spark) to take advantage of memory
that is cost-effectively deployed but
may incur higher latency.

There are unique software require-
ments for disaggregated memory. The
first of these is the friction of using
rich data in disaggregated memory

from independently scaled CPUs. The
second is an enhanced need for lever-
aging hardware mechanisms to raise
the level of security for data in CXL
memory, which is technically located
outside the CPU and thus may outlive
processors and processes. A related fi-
nal issue is state consistency in the face
of decoupled CPU and memory failures.

The principal difficulty of multiple
hosts accessing data in disaggregated
memory is that the virtual-to-physical-ad-
dress translation context of those data is
a property of the process that is managed
for the process by using microprocessor
hardware mechanisms, such as page table
entries and memory management units.

New device-side software is draw-
ing upon the analogy between memory
and storage and building for disaggre-
gated memory what services such as
S3 built for cloud storage: a foundation
based on self-contained objects.7 In
these new products, memory objects
rescue the translation context required
by graph-structured data and compute
and embed the necessary information
in the form of a foreign object table that
resides at a known location in every
memory object.

Memory-efficient pointers take ad-
vantage of properly constructed objects
(mostly intraobject pointers) to store
unique 128-bit global object identifi-
ers within the foreign object table for
resolving extraobject pointers. Intrao-
bject pointers can avoid the overhead
by storing just the intraobject offsets
[Figure 2(a)]. Such techniques allow an
Elephance MemOS to expose global ref-
erences [Figure 2(b)] that can be used in
describing computations and data that
1) can be placed flexibly within the dis-
aggregated system and 2) can use the
more efficient parameter passing by
reference to communicate pointers to
data between services8 rather than the
relatively inefficient parameter passing
by value used in current Remote Proce-
dure Call (RPC) mechanisms employed
by existing data-rich microservices.

New OS software for disaggregated
memory nodes knows how to keep out
of the hardware data path except in the

 S E P T E M B E R 2 0 2 2 97

events of memory allocation, deallo-
cation, or pointer dereferencing. How-
ever, there is also an enhanced need
to protect the data held in far memory
even after the failure of a process, OS,
or server hosting the computation that
last wrote the data. Elephance MemOSs

will evolve to exploit architectural capa-
bilities,9 which are hardware-enforced
permission mechanisms that deliver
spatial, temporal, and referential safety
even to memory-unsafe languages.

Finally, much as the work on Sin-
fonia10 did 15 years ago for network

distributed memory, the software work
for disaggregated memory needs to of-
fer a safe way to mutate data held in far
memory without risking consistency
should failure occur at either end of the
remote operation. Fresh research is cur-
rently in progress to address that issue.

Figure 2. (a) Elephance MemOS runs on each disaggregated memory node and allows memory objects with internal and external
persistent pointers to be created within its managed memory. (b) Pointers that are globally meaningful can lead to more efficient
communication for data-heavy distributed applications. MemOS: memory operating system; RPC: Remote Procedure Call. (Courtesy
of Elephance Memory.)

DDR Memory

CXL Single
Host Memory

MemOS . . .

MemOS . . .

runs here runs here

to manage this memoryto manage this memory

Disaggregated Memory node
CXL Multihost

Memory

These pointers
can be passed

from host to host
to realize efficient

RPCs with passing
of function and

data by reference.

allows subgraphs
to be created and manipulated

as memory objects

... and exposes the data linkages
within and between memory objects

... as pointers that are valid globally

(a)

(b)

MEMORY AND STORAGE

Memory disaggregation is ad-
dressing a problem with high
economic impact in data cen-

ter servers. To realize the full poten-
tial of this new technology, software
will evolve to exploit far and fungible
memory through safe, portable, and ef-
ficient mechanisms that enhance data
sharing and respect data gravity.

REFERENCES
1. P. S. Rao and G. Porter, “Is memory

disaggregation feasible? A case study
with spark SQL,” in Proc. Symp. Archi-
tectures Netw. Commun. Syst. (ANCS ‘16),
New York, NY, USA, 2016, pp. 75–80,
doi: 10.1145/2881025.2881030.

2. L. Barroso, M. Marty, D. Patterson,
and P. Ranganathan, “Attack of the
killer microseconds,” Commun. ACM,
vol. 60, no. 4, pp. 48–54, Apr. 2017,
doi: 10.1145/3015146.

3. “CXL 2.0 Specification,” CXL
Consortium, Beaverton, OR, USA,
Nov. 10, 2020. Accessed: Jun. 20,
2022. [Online]. Available: https://

www.computeexpresslink.org/
download-the-specification

4. K. T. Lim, J. Chang, T. Mudge, P. Ran-
ganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for
expansion and sharing in blade serv-
ers,” ACM Sigarch Comput. Architecture
News, vol. 37, no. 3, pp. 267–278, 2009,
doi: 10.1145/1555815.1555789.

5. J. Shalf et al., "Photonic memory dis-
aggregation in datacenters," in Proc.
Photon. Switching Comput., Optica
Publishing Group, 2020, p. PsW1F-5.

6. H. Li et al., “First-generation memory
disaggregation for cloud platforms,”
2022, arXiv:2203.00241.

7. D. Bittman, P. Alvaro, P. Mehra,
D. D. Long, and E. L. Miller, “Twizzler:
A data-centric OS for non-volatile mem-
ory,” ACM Trans. Storage, vol. 17, no. 2,
pp. 1–31, May 2021, doi: 10.1145/3454129.

8. D. Bittman et al., “Don’t let RPCs
constrain your API,” in Proc.
20th ACM Workshop Hot Topics
Netw., 2021, pp. 192–198, doi:
10.1145/3484266.3487389.

9. J. Woodruff et al., “The CHERI
capability model: Revisiting RISC
in an age of risk,” ACM Sigarch
Comput. Architecture News, vol.
42, no. 3, pp. 457–468, 2014, doi:
10.1145/2678373.2665740.

10. M. Aguilera, A. Merchant, M. Shah,
A. Veitch, and C. Karamanolis, “Sin-
fonia: A new paradigm for building
scalable distributed systems,” in
Proc. 21st ACM SIGOPS Symp. Oper.
Syst. Principles, 2007, pp. 159–174, doi:
10.1145/1323293.1294278.

PANKAJ MEHRA is the founder
of Elephance Memory, San Jose,
95129, California, USA. Contact him
at pankaj.mehra@ieee.org.

TOM COUGHLIN is president of
Coughlin Associates, San Jose,
California, 95124, USA. He is a
Fellow of IEEE. Contact him at
tom@tomcoughlin.com.

Digital Object Identifier 10.1109/MC.2022.3195394

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

