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Data centers, especially the large ones, are con-
stantly seeking to optimize their resource uti-
lization. With scale comes increasing pressure 
to get the most out of one’s hardware. The re-

quirement to use compute resources more efficiently, for 
instance, led to the widespread use of virtual machines 
running on servers and, more recently, to creating virtual 
machines or containers utilizing disaggregated (separated) 
storage and networking components. Disaggregation usu-
ally results in interconnected pools of computer resources, 
such as processors, networks, and storage, which can then 

be reaggregated using software to 
configure virtual machines or con-
tainers for running various processes. 
The software-based combination of 
pooled computer resources is also 
known as composable infrastructure.

Storage pooling today focuses 
on using nonvolatile memory ex-
press (NVMe) running on fabrics 
(NVMe-oF), allowing arrays of sol-
id-state drives (SSDs) in a storage 
pool that can then be assigned to 
provide storage for containers or vir-
tual machines that can be spun up 

and down at will, resulting in a much higher utilization 
of storage resources. New memory networking standards 
are now making it possible to disaggregate memory be-
yond today’s direct connection to a CPU toward memory 
pools that can be shared on an interconnection network 
and allocated as part of a data center’s composable infra-
structure. Let’s examine these developments, which will 
help future data centers tame their memory needs.

In 2016, Rao and Porter1 found memory disaggregation 
over traditional networks favorable for Apache Spark’s 
memory-intensive and highly partitionable workloads. In 
2017,  Barroso et al.2 anticipated the changing access char-
acteristics of data in data centers and encouraged software 
developers to address a gap in their stacks when it came to 
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accessing data that was approximately 
1  µs away. A form of disaggregating 
memory was possible even before Rao 
and Porter’s work. Hardware proposals 
for stand-alone memory blades4 antic-
ipated many of the aspects of modern 
memory disaggregation fabrics.

In 2019, the Compute Express Link 
(CXL) Consortium was formed to create 
standards for disaggregating memory 
and creating memory pools indirectly 
connected to CPUs. In  November 2020, 
the CXL Consortium released its 2.0 
specification.3 The CXL 3.0 specification 
release is expected sometime in 2022. 
CXL runs on the Peripheral Component 
Interconnect Express (PCIe) bus and 
uses advances in serial link technology 
(such as high-speed SerDes) and the de-
cades-old idea that a handful of serial 
links, each forming a lane of 4×-to-16×-
wide serial links, can serve as a sys-
tem-expansion interconnect. CXL-en-
abled systems are expected by the end of 
2022 or early 2023, based upon the latest 
PCIe specification, generation 5.

CXL makes protocol-layer enhance-
ments to PCIe that make it especially 
apt for memory attachment. First, it 
allows long input–output (I/O) packets 
and short cache-line grain accesses to 
share the same physical link by sup-
porting arbitration at the flow-digit 
level so that load–store operations 
and I/O direct memory access (DMA) 
operations can share the same phys-
ical link without memory accesses 
incurring exorbitant latencies due to 
I/O Transport Layer packets crossing 
switch ports in front of memory data. 
Second, it specifies coherence proto-
cols that allow caches and buffers to 
be coherently connected to processors 
inside a disaggregated heterogeneous 
system composed of both traditional 
elements, such as general-purpose 
CPUs with their tightly coupled mem-
ory devices, and novel elements, such 
as far memory and domain-specific 
accelerators (field-programmable gate 

a r rays, GPUs, and coarse-grained re-
configurable arrays with highly inte-
grated static random-access memory or 
high-bandwidth memory dynamic ran-
dom-access memory). Figure  1 shows 
some CXL pooling approaches.

FROM IN-SERVER AND 
DISTRIBUTED MEMORY TO 
DISAGGREGATED MEMORY
Each generation of CXL will allow mem-
ory to be deployed farther from the CPU 
with increasing flexibility in terms of 
the capacity deployed, the dynamic 
configuration of host memory capacity, 
and the number of hosts able to share 
and efficiently access fabric-attached 
memory. The benefits of this are best 
understood in contrast with the tradi-
tional bespoke deployment of dual in-
line memory modules (DIMMs) on the 
double-data-rate (DDR) buses of CPU 
sockets, each socket exposing four, six, 
or even eight DDR channels and allow-
ing two (lately just one because of ca-
pacitive loading) DIMMs per channel.

Those CPUs were interconnected 
via a switched or point-to-point sym-
metric coherency fabric that allowed 
uniform or nonuniform latency of load–
store access to each other’s memory. 
The lanes of PCIe emanated from CPU 
sockets separately, often with 96 or 128 
lanes per socket, and were routed to 
I/O devices, such as network interface 

cards (NICs) or SSDs, with or without 
switches and retimers on the back-
plane or midplane. In other words, the 
CPUs were attached to memory in one 
way and to I/O in another.

Because of the disaggregation of I/O, 
first providing access to storage over 
Fibre Channel and IP networks in the 
1990s and subsequently using the more 
expensive NICs and SmartNICs (Xsigo, 
VirtenSys, and Mellanox Multihost NICs) 
during the 2000s and 2010s, PCIe was 
created to meet the need for system-ex-
pansion fabrics capable of supporting re-
mote DMA (RDMA). Although CPUs and 
their application software also adopted 
RDMA for efficient interprocessor com-
munication, the heavy software path of 
setting up and tearing down the memory 
registrations required for safe, zero-copy 
RDMA and the heavy queue-pair-based 
issue and completion paths of RDMA 
read and write operations remind one 
more of storage protocols (such as NVMe) 
than of memory access. By contrast, it is 
expected that even the higher CXL la-
tencies (compared to DIMMs) will be an 
order of magnitude lower than the lower 
RDMA read round-trip time.

DISAGGREGATION-RELATED 
TRENDS AND THEIR 
IMPLICATIONS
Some of the implications of memory 
disaggregation are similar to those 
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Figure 1. CXL memory/accelerator pooling approaches. (Courtesy of the CXL Consortium.)
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of storage disaggregation in the late 
1990s. When any resource decouples 
from a host server, it must be managed 
differently. Starting with power-up 
and boot, there are fewer ordering 
g uarantees over t he power-up se-
quence across disaggregated compo-
nents. Because of the independence of 
procurement and decommissioning of 
resources and also because of indepen-
dent failures, there are fewer assur-
ances of coavailability.

On the positive side, one may now in-
dependently scale components that pre-
viously could not be. The independent 
manageability required of the freshly 
disaggregated components creates an 
opportunity for value-added services. 
For instance, storage arrays developed 
many new software-based capabilities 
not previously available in hard disk 
drives, such as snapshots, cloning, and 
thin provisioning, to name a few. We 
likewise expect disaggregated mem-
ory nodes to evolve from devices into 
subsystems with a growing list of novel 
software-based capabilities.

Independent scaling of computa-
tion and memory is to be contrasted 
with homogeneous scale-out, where 
the sins of bespoke memory deploy-
ment were compounded by eager 
overprovisioning and the inability to 
acquire more memory without the cost 
and latency of additional processors.

Moreover, the economic impact of 
bespoke memory deployment runs deep 
in today’s data centers. First, memory 
has now become the costliest element 
of a data center server’s bill of materi-
als, accounting for as much as 50% of 
the overall cost compared with 25% in 
2009.4 For this reason, as many as five to 
seven server stock keeping units (SKUs) 
are commonly found in a 100,000-server 
cloud data center, mainly differing in 
their memory capacity. The use of these 
fixed SKUs can result in up to 34% of 
memory capacity remaining idle.

Second, because of the inability to 
dynamically grow the memory capacity 
of a server to match demand, applica-
tions are forced to consider either toler-
ating out-of-memory errors or moving 

their data to larger instances, just when 
the footprint of their state is at its peak, 
neither of which is particularly palat-
able to modern DevOps.

Third, as if that weren’t enough 
trouble, the capacity needs of ap-
plications vary wildly.4 Speaking at 
the Fifth International Symposium 
on Heterogeneous Integration, John 
Shalf, the CTO of the National Energy 
Research Scientific Computing Center, 
has observed that server workloads 
use less than 25% of their memory, 75% 
of the time.5 So wasteful is bespoke de-
ployment of memory in the data cen-
ter that a resource that is procured by 
data center operators at approximately 
US$4/gigabyte is then rented out to 
cloud service operators at approxi-
mately US$22–US$30/gigabyte/year, 
probably to make up for the losses in a 
poorly architected value chain.

In their 2022 Architectural Sup-
port for Programming Languages and 
Operating Systems conference article, 
Microsoft Azure researchers6 estimate 
that they can save approximately 10% 
of overall memory cost by placing just 
the cold pages (infrequently accessed 
provisioned memory) in a CXL-based 
far-memory tier shared between 16 and 
32 servers.

INDUSTRY’S ROAD MAP OF 
MEMORY DISAGGREGATION
Given that the demand for memory 
keeps rising because of the growth of 
memory-intensive workloads, archi-
tects will need to get much more ag-
gressive about leveraging memory as 
a far, fungible, and shared resource. 
There has been some recognition that 
bottom-up hardware developments, 
such as CXL, are merely a first step in 
the right direction. The guidance of 
Barroso et al.2 is that software needs 
to evolve for more workloads (than just 
Spark) to take advantage of memory 
that is cost-effectively deployed but 
may incur higher latency.

There are unique software require-
ments for disaggregated memory. The 
first of these is the friction of using 
rich data in disaggregated memory 

from independently scaled CPUs. The 
second is an enhanced need for lever-
aging hardware mechanisms to raise 
the level of security for data in CXL 
memory, which is technically located 
outside the CPU and thus may outlive 
processors and processes. A related fi-
nal issue is state consistency in the face 
of decoupled CPU and memory failures.

The principal difficulty of multiple 
hosts accessing data in disaggregated 
memory is that the virtual-to-physical-ad-
dress translation context of those data is 
a property of the process that is managed 
for the process by using microprocessor 
hardware mechanisms, such as page table 
entries and memory management units.

New device-side software is draw-
ing upon the analogy between memory 
and storage and building for disaggre-
gated memory what services such as 
S3 built for cloud storage: a foundation 
based on self-contained objects.7 In 
these new products, memory objects 
rescue the translation context required 
by graph-structured data and compute 
and embed the necessary information 
in the form of a foreign object table that 
resides at a known location in every 
memory object.

Memory-efficient pointers take ad-
vantage of properly constructed objects 
(mostly intraobject pointers) to store 
unique 128-bit global object identifi-
ers within the foreign object table for 
resolving extraobject pointers. Intrao-
bject pointers can avoid the overhead 
by storing just the intraobject offsets 
[Figure 2(a)]. Such techniques allow an 
Elephance MemOS to expose global ref-
erences [Figure 2(b)] that can be used in 
describing computations and data that 
1) can be placed flexibly within the dis-
aggregated system and 2) can use the 
more efficient parameter passing by 
reference to communicate pointers to 
data between services8 rather than the 
relatively inefficient parameter passing 
by value used in current Remote Proce-
dure Call (RPC) mechanisms employed 
by existing data-rich microservices.

New OS software for disaggregated 
memory nodes knows how to keep out 
of the hardware data path except in the 
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events of memory allocation, deallo-
cation, or pointer dereferencing. How-
ever, there is also an enhanced need 
to protect the data held in far memory 
even after the failure of a process, OS, 
or server hosting the computation that 
last wrote the data. Elephance MemOSs 

will evolve to exploit architectural capa-
bilities,9 which are hardware-enforced 
permission mechanisms that deliver 
spatial, temporal, and referential safety 
even to memory-unsafe languages.

Finally, much as the work on Sin-
fonia10 did 15 years ago for network 

distributed memory, the software work 
for disaggregated memory needs to of-
fer a safe way to mutate data held in far 
memory without risking consistency 
should failure occur at either end of the 
remote operation. Fresh research is cur-
rently in progress to address that issue.

Figure 2. (a) Elephance MemOS runs on each disaggregated memory node and allows memory objects with internal and external 
persistent pointers to be created within its managed memory. (b) Pointers that are globally meaningful can lead to more efficient 
communication for data-heavy distributed applications. MemOS: memory operating system; RPC: Remote Procedure Call. (Courtesy 
of Elephance Memory.) 

DDR Memory

CXL Single
Host Memory

MemOS . . .

MemOS . . .

runs here runs here

to manage this memoryto manage this memory

Disaggregated Memory node
CXL Multihost

Memory

These pointers
can be passed

from host to host
to realize efficient

RPCs with passing
of function and

data by reference.

allows subgraphs
to be created and manipulated

as memory objects

... and exposes the data linkages
within and between memory objects

... as pointers that are valid globally

(a)

(b)



MEMORY AND STORAGE

Memory disaggregation is ad-
dressing a problem with high 
economic impact in data cen-

ter servers. To realize the full poten-
tial of this new technology, software 
will evolve to exploit far and fungible 
memory through safe, portable, and ef-
ficient mechanisms that enhance data 
sharing and respect data gravity. 
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