
POSTER: High-Throughput GPU RandomWalk with
Fine-tuned Concurrent Query Processing

Cheng Xu1, Chao Li1, Pengyu Wang1, Xiaofeng Hou2, Jing Wang1, Shixuan Sun3, Minyi Guo1,
Hanqing Wu4, Dongbai Chen4, Xiangwen Liu4

1Shanghai Jiao Tong University, 2Hong Kong University of Science and Technology
3National University of Singapore, 4Alibaba Inc

Abstract
Random walk serves as a powerful tool in dealing with large-
scale graphs, reducing data size while preserving structural
information. Unfortunately, existing system frameworks all
focus on the execution of a single walker task in serial. We
propose CoWalker, a high-throughput GPU random walk
framework tailored for concurrent random walk tasks. It in-
troduces a multi-level concurrent execution model to allow
concurrent random walk tasks to efficiently share GPU re-
sources with low overhead. Our system prototype confirms
that the proposed system could outperform (up to 54%) the
state-of-the-art in a wide spectral of scenarios.

Keywords: Random Walk, GPU, Co-location

1 Introduction
Random walk has recently become a very common cloud
workload in today’s data centers due to the widespread de-
ployment of graph neural networks (GNNs). It is responsible
for distilling the low-dimension feature vectors from the
large original graphs, which will be in turn used for various
tasks such as node/graph classification, link prediction and
recommendation systems. Since random walk can reduce
the target graph size without sacrificing performance, it has
been widely adopted as part of GNN applications [7].

We have witnessed a growing interest in specialized frame-
works for optimizing random walk workload on both CPU
and GPU [2, 5, 6]. GPU random work systems possess great
potential to outperform CPU-based systems. The reason is
that operations sampling different vertices within one task
are independent of each other, requiring no communication
[1]. Recent works have simulated the deployment of concur-
rent graph applications on various architectures [3, 4]. In this
regard, the massive parallelism of GPUs allows GPU-based
frameworks to span thousands of concurrent walkers.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577482

However, leveraging GPUs to perform random walk is
non-trivial due to its intensive, complex memory access pat-
tern. Current GPU-based frameworks all apply the execu-
tion pattern of CPU based-systems directly to GPUs where
a single random walk task is highly paralleled[5]. While this
model perform well on CPUs, it can lead to severe GPU store
and lower the overall throughput. Random walk is a kind of
memory-intensive workload and suffers from the imbalance
of memory-to-compute bandwidth. Especially for graphs
exceeding the GPU memory capacity, the low PCIe band-
width between the CPU and GPU causes most GPU cores
to remain idle to wait for the data, resulting in severe GPU
underutilization. One GPU might be capable of serving con-
current random walk tasks from multiple GNN workloads if
a well-designed space sharing technique is applied.
In this paper we show that it requires fine-grained con-

currency optimizations and significant engineering efforts
to develop a framework to harness massive random walk
tasks. We employ a concurrent model to reduce stalled GPU
cores. Through extensive experiments, we show that our
framework demonstrates great performance and scalability.

Our contribution can be summarized as:
• We introduce amulti-level concurrent executionmodel
for random walk tasks.

• We implement and verify a high-throughput frame-
work for concurrent random walk on GPU.

2 Background
We choose alias method as our neighbour selecting method.
It builds two tables at its preprocess stage: a probability table
𝑃 and an alias table 𝐴 to draw samples. Alias method can be
executed in either offline or online mode. The offline mode
first constructs an alias table for the whole graph, so that the
execution stage can be executed in 𝑂 (1) at the expense of
𝑂 (𝑑) preprocessing for each vertex. On the other hand, the
online mode only constructs partial alias table when needed.

3 Concurrent RandomWalk System
We design a novel concurrent execution model which en-
ables fine-grained GPU space sharing. It takes both the ex-
ecution mode and graph property into account to alleviate
the problem of computational stall. As presented in Figure 1,
our framework combines both mode-level concurrency and

432

https://doi.org/10.1145/3572848.3577482
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577482&domain=pdf&date_stamp=2023-02-21

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada Cheng et al.

Figure 1. Multi-Level Concurrency.

graph-level concurrency for highest overall system through-
put. This feature allows our system to adapt to a wide spec-
trum of scenarios.
Mode-level concurrency. Offline and online random

walk tasks using alias method are complementary to each
other. It can be seen by analyzing their time complexity and
space complexity. In terms of time complexity, offline tasks
work in a direct look-up table pattern, requiring only 𝑂 (1)
for every vertex. Differently, online tasks need to first use
𝑂 (𝑑) to construct that specific partition of alias table for the
vertex on the fly, where 𝑑 is the degree of that vertex. A small
portion of CUDA cores can fulfill the computing resource
requirement for offline tasks and the rest work of online tasks.
In terms of space complexity, offline tasks rely on alias table
construction, requiring 4 ∗ |𝐸 | + 2 ∗ |𝑉 | in space. For some
large graphs, it means a difference of more than 15 GB in
storage space. Concurrently running offline and online tasks
can ease pressure on GPU memory and bandwidth, since
online tasks do not require extra alias tables and only require
2 ∗ |𝐸 | + |𝑉 | to store the graph data.
Graph-level concurrency. In graph-level concurrency,

we smartly combine tasks of different graph sizes with the
same mode. For offline tasks, there are abundant computing
resources stalled for lack of memory bandwidth, especially
for large graphs stored in the host memory. Our idea is to
overlap data access to increase equivalent memory band-
width and better utilize GPU cores. After finishing certain
computing procedures, the GPU core needs to fetch graph
data for the following process based on the result. The graph
data to be visited may be currently stored in the GPU mem-
ory or the host memory, which is accessed differently. Data
stored in host memory must first be transferred to GPUmem-
ory through the PCIe link, and this transfer process could
be very lengthy. Therefore, we concurrently launch another
kernel conducting random walk tasks on small graphs stored
on GPU memory to exploit the on-board GPU memory re-
sources while transferring these data, which significantly
increases the equivalent memory bandwidth.

(a) Graph-level

(b) Mode-level

Figure 2. Normalized execution time of CoWalker with bal-
anced query execution time compared with serial and MPS.
LJ, SK, UK and GG are commonly used graph datasets.

4 Evaluation
Figure 2 shows the contribution of the two-level concurrency
optimization used by CoWalker.Without CoWalker, the tasks
are executed in serial. For graph-level concurrency, we ex-
ecute DeepWalk; for mode-level concurrency, we execute
DeepWalk and PPR with node2vec.
The MPS implementation fails to surpass the serial base-

line in most scenarios, since the coarse-grained resource
management strategy leads to interference between differ-
ent tasks. It is especially obvious in Mode-level concurrency,
where the MPS implementation is 1.87∼2.11× slower. When
it comes to the case of Graph-level concurrency, the exe-
cution time of MPS implementation in offline mode ranges
from 1.02∼1.08×. However, its execution time is less than the
serial baseline in all cases in online mode. It even surpasses
CoWalker in the case of LJ+LJ by 13%, showing superiority
in walking on small graphs concurrently online.
The execution time of CoWalker is less than SkyWalker

in all cases. With graph-level concurrency, the lowest exe-
cution time with CoWalker is only 67% of SkyWalker. For
mode-level concurrency, CoWalker spends 75%∼89% of the
execution time compared to SkyWalker. It’s because setting
aside part of the computing resources will inevitably lower
the performance of node2vec workloads.

5 Conclusion
We present CoWalker, a high-throughput GPU random walk
framework enabling fine-tuned concurrent query process-
ing. We hope that our study can spur further research in
concurrent graph processing on heterogeneous systems.

433

POSTER: High-Throughput GPU Random Walk with Fine-tuned Concurrent Query ProcessingPPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

References
[1] Peitian Pan and Chao Li. 2017. Congra: Towards Efficient Processing of

Concurrent Graph Queries on Shared-Memory Machines. In ICCD 2017.
217–224. https://doi.org/10.1109/ICCD.2017.40

[2] Shixuan Sun et al. 2021. ThunderRW: An In-Memory Graph Random
Walk Engine. Proc. VLDB Endow. 14, 11 (2021), 1992–2005. http://www.
vldb.org/pvldb/vol14/p1992-sun.pdf

[3] Jing Wang et al. 2022. Excavating the Potential of Graph Workload on
RDMA-based Far Memory Architecture. In IPDPS 2022. IEEE, 1029–1039.
https://doi.org/10.1109/IPDPS53621.2022.00104

[4] Pengyu Wang et al. 2021. Grus: Toward Unified-Memory-Efficient
High-Performance Graph Processing on GPU. ACM Trans. Archit. Code
Optim. 18, 2 (2021).

[5] Pengyu Wang et al. 2021. Skywalker: Efficient Alias-Method-Based
Graph Sampling and Random Walk on GPUs. In PACT 2021. IEEE, 304–
317. https://doi.org/10.1109/PACT52795.2021.00029

[6] Ke Yang et al. 2019. KnightKing: a fast distributed graph random walk
engine. In SOSP 2019. ACM, 524–537. https://doi.org/10.1145/3341301.
3359634

[7] Rex Ying et al. 2018. Graph Convolutional Neural Networks for Web-
Scale Recommender Systems. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (2018).

434

https://doi.org/10.1109/ICCD.2017.40
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf
https://doi.org/10.1109/IPDPS53621.2022.00104
https://doi.org/10.1109/PACT52795.2021.00029
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634

	Abstract
	1 Introduction
	2 Background
	3 Concurrent Random Walk System
	4 Evaluation
	5 Conclusion
	References

