
High-quality community searching and clustering on large graph datasets has
become a significant concern in both industry [1,3] and academia[2,4,5].

Introduction & Background

• In this paper we explore the parallelism design of

Leiden algorithm on multi-thread monolithic

server and distributed servers.

• We design thread locks and efficient buffers to

solve community joining conflicts and reduce

communication overheads.

• Our system ParLeiden can handle significantly

larger graphs and achieves performance speedup

on up to 9.8× than baseline methods.

Challenges

ParLeiden Design

Conclusion Reference

Parallel challenges of Leiden Algorithm

1). Challenge 1: The correctness

• Concurrent workers face conflict upon reaching the limit of community size.

• Basic thread locks cannot ensure correctness without sacrificing the parallelism.

2). Challenge 2: The overhead

• Concurrent community updating always requires the latest quality value computed

by other threads and servers, causing massive waiting overhead.

• Random community data access and synchronization across servers in parallel

environment causes unacceptable data communication cost.

Monolithic Thread-level parallelism Design

Fig 2: The main challenges of parallel Leiden: the data conflict and the communication cost.  

• Leiden[4] is a SOTA algorithm based on Louvain[2, 5], a more efficient

community detection method with well-connected communities.

(1). Move phase: We use multiple

threads with proposed locks to

parallel process each node’s

movement to the neighbors. We

calculate the quality difference of

the leaving and joining community

to decide the community labels. We

update each node label iteratively

till convergence.

(2). Refine phase: We re-traversal

each community that is generated in

the move node phase with different

threads. The refinement will search

new communities only inside of

each community so the execution is

totally in parallel.

(3). Aggregate phase: We merge

the nodes in sub-communities in

the refine phase into a single vertex

and merge the inner and outer edges.

We use the basic parallel APIs to

aggregate the new graph.

(4). Repeat till convergence: We

search communities iteratively on

the new graph until there’s no

quality improvement on every

community.

We design ParLeiden, a fast parallel Leiden strategy that processes large-scale 

graph data with multiple threads on distributed platforms.

Result 1: We can achieve almost equivalent quality 

compared with Leiden on different community size 

limits and different datasets. 

ParLeiden can handle significantly larger graphs, surpassing the capacity of the baselines. We achieve performance 

speedup on up to 9.8× than single thread baseline[2] with closed quality and 9.6× than KatanaGraph[3]  in each iteration.

The evaluated baselines: 

• Leiden[4]: Original Leiden algorithm

• KatanaGraph[1]: State-of-the-art parallel Leiden implementation

• ParLeiden: Our parallel Leiden algorithm

Result 4: The speedup of ParLeiden

over baselines on each iteration. 

[1] KatanaGraph. https://katanagraph.ai/.

[2] Sayan Ghosh et al . 2018. Distributed louvain algorithm for graph 

community detection. In IPDPS.

[3] Thomas Magelinski et al . 2021. Measuring node contribution to 

community structure with modularity vitality. IEEE TNSE (2021).

[4] Vincent A Traag et al . 2019. From Louvain to Leiden: guaranteeing 

well-connected communities. Scientific reports (2019).

[5] Jianping Zeng and Hongfeng Yu. 2018. A Scalable Distributed Louvain 

Algorithm for Large-Scale Graph Community Detection. In CLUSTER.

• The distributed parallel design of the Leiden algorithm becomes crucial as

the size of graph data grows much larger.
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Fig 1: The execution workflow of Leiden Algorithm.
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Fig 3: CAS-based thread locks with cached intermediate data.   Fig 4: Server-level shared cache and transferred data merging.  

Result 3: ParLeiden shows good speedup when scaling up with 

multiple threads and scaling out with multiple servers. 

Fig 5: ParLeiden workflow compared with single-thread Leiden.

• We design CAS-based thread locks to handle the 

joining conflict of joining the same community. 

• We use shared memory to cache the community and 

quality information of each traversed node. 

• We adopt centralized distributed computing model 

including message merging and parallel broadcast.

• We optimize the processing order of vertices to reduce 

the cycle synchronization cost across servers.

• Community size limitation[4] is an essential requirement in risk control and

anomaly detection scenarios to avoid results with overly large communities.

• However, community limit brings significant challenge when parallelizing Leiden.

Server 1

Experimental Evaluation

Novelty1: We design threads locks and

shared cache to lift the competition of

multiple vertices joining the community

with correctness assurance.

Novelty2: We adopt centralized computing

model and optimized processing order on

distributed servers to reduce communication

overhead with consistency guarantee.
∗These authors contributed equally to this work.

ParLeiden-S: single node version  

ParLeiden-D: distributed version  
Baseline-number (e.g. Leiden-1000)：
The number is community size upper limit. 

Result 2: The quality difference is negligible and decreases over 

iterations on ParLeiden-S(96 threads) and ParLeiden-D (2 servers). 
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Datasets are from http://snap.stanford.edu/data/index.html


