
High-quality community searching and clustering on large graph datasets has
become a significant concern in both industry [1,3] and academia[2,4,5].

Introduction & Background

• In this paper we explore the parallelism design of

Leiden algorithm on multi-thread monolithic

server and distributed servers.

• We design thread locks and efficient buffers to

solve community joining conflicts and reduce

communication overheads.

• Our system ParLeiden can handle significantly

larger graphs and achieves performance speedup

on up to 9.8× than baseline methods.

Challenges

ParLeiden Design

Conclusion Reference

Parallel challenges of Leiden Algorithm

1). Challenge 1: The correctness

• Concurrent workers face conflict upon reaching the limit of community size.

• Basic thread locks cannot ensure correctness without sacrificing the parallelism.

2). Challenge 2: The overhead

• Concurrent community updating always requires the latest quality value computed

by other threads and servers, causing massive waiting overhead.

• Random community data access and synchronization across servers in parallel

environment causes unacceptable data communication cost.

Monolithic Thread-level parallelism Design

Fig 2: The main challenges of parallel Leiden: the data conflict and the communication cost.

• Leiden[4] is a SOTA algorithm based on Louvain[2, 5], a more efficient

community detection method with well-connected communities.

(1). Move phase: We use multiple

threads with proposed locks to

parallel process each node’s

movement to the neighbors. We

calculate the quality difference of

the leaving and joining community

to decide the community labels. We

update each node label iteratively

till convergence.

(2). Refine phase: We re-traversal

each community that is generated in

the move node phase with different

threads. The refinement will search

new communities only inside of

each community so the execution is

totally in parallel.

(3). Aggregate phase: We merge

the nodes in sub-communities in

the refine phase into a single vertex

and merge the inner and outer edges.

We use the basic parallel APIs to

aggregate the new graph.

(4). Repeat till convergence: We

search communities iteratively on

the new graph until there’s no

quality improvement on every

community.

We design ParLeiden, a fast parallel Leiden strategy that processes large-scale

graph data with multiple threads on distributed platforms.

Result 1: We can achieve almost equivalent quality

compared with Leiden on different community size

limits and different datasets.

ParLeiden can handle significantly larger graphs, surpassing the capacity of the baselines. We achieve performance

speedup on up to 9.8× than single thread baseline[2] with closed quality and 9.6× than KatanaGraph[3] in each iteration.

The evaluated baselines:

• Leiden[4]: Original Leiden algorithm

• KatanaGraph[1]: State-of-the-art parallel Leiden implementation

• ParLeiden: Our parallel Leiden algorithm

Result 4: The speedup of ParLeiden

over baselines on each iteration.

[1] KatanaGraph. https://katanagraph.ai/.

[2] Sayan Ghosh et al . 2018. Distributed louvain algorithm for graph

community detection. In IPDPS.

[3] Thomas Magelinski et al . 2021. Measuring node contribution to

community structure with modularity vitality. IEEE TNSE (2021).

[4] Vincent A Traag et al . 2019. From Louvain to Leiden: guaranteeing

well-connected communities. Scientific reports (2019).

[5] Jianping Zeng and Hongfeng Yu. 2018. A Scalable Distributed Louvain

Algorithm for Large-Scale Graph Community Detection. In CLUSTER.

• The distributed parallel design of the Leiden algorithm becomes crucial as

the size of graph data grows much larger.

ParLeiden: Boosting Parallelism of Distributed Leiden Algorithm on Large-scale Graphs
Yongmin Hu *1, Jing Wang *1,2, Cheng Zhao 1, Yibo Liu1,2, Cheng Chen1, Xiaoliang Cong1, Chao Li2

{huyongmin,zhaocheng.127,chencheng.sg,congxiaoliang}@bytedance.com, {jing618, liuyib}@sjtu.edu.cn, lichao@cs.sjtu.edu.cn

ByteDance1, Shanghai Jiao Tong University2

1

Judge

(a). Single thread

Join C

2

Judge

Not join C

1

Judge

Join C

2

Judge

Join C

Conflict

(b). Multiple threads

1

Judge

Join C

2

Judge

Join C

Communication
cost

(c). Distributed computing

Conflict

Vertex 1

Vertex 2

M
o

ve
 p

h
as

e：

(multiple threads)
T

im
el

in
e

It
er

at
io

n
 ×
𝑁
𝑚
𝑜
𝑣
𝑒

Check ∆quality

Check comm_size

Move node

Update community

…

Vertex 1

Check ∆quality

Check comm_size

Move nodes

Update community

Vertex T

Check ∆quality

Check comm_size

Move nodes

Update community

Vertex V

…

Vertex T+1 Vertex 2T
…

Vertex (V-T+1)
…

Vertex V…
Lock

(single thread)

Lock Lock

CAS-based lock

Shared community data

Shared ∆quality list (ordered)

Random ∆quality

Update subcommC
o

m
m

 1

R
ef

in
e

p
h

as
e：

C
o

m
m

 X

…
…

Vertex 1

Vertex 𝑉𝐶

…
It

er
at

io
n

s

…

…

Community 1 Community X…

Random ∆quality

Update subcomm

Vertex 1

Vertex 𝑉C1

It
er

at
io

n
s

…

Random ∆quality

Update subcomm

Vertex 1

Vertex 𝑉C𝑋

It
er

at
io

n
s

…

Fig 1: The execution workflow of Leiden Algorithm.

1

4 3

2

5

6

7

Move phase Refine phase Aggregate phase

1

4 3

2

5

6

7

1

4 3

2

5

6

7

14

5 7

Iteration × 𝑁L𝑒𝑖𝑑𝑒𝑛

Distributed Server-level parallelism Design

1 42 3

Queue

Threads

Vertices

L L L LLocks

CAS-based lock

Thread cached data

addr. old_v new_v

upper_limit(comm_size)

Community ∆quality

Add to community

…
Server 2

Server n

L L L L

Communities

Parallel send

①I

I
I Imerge

Server Cached data Broadcast

Recv&Update

Parallel receive②

ParLeiden Workflow

Fig 3: CAS-based thread locks with cached intermediate data. Fig 4: Server-level shared cache and transferred data merging.

Result 3: ParLeiden shows good speedup when scaling up with

multiple threads and scaling out with multiple servers.

Fig 5: ParLeiden workflow compared with single-thread Leiden.

• We design CAS-based thread locks to handle the

joining conflict of joining the same community.

• We use shared memory to cache the community and

quality information of each traversed node.

• We adopt centralized distributed computing model

including message merging and parallel broadcast.

• We optimize the processing order of vertices to reduce

the cycle synchronization cost across servers.

• Community size limitation[4] is an essential requirement in risk control and

anomaly detection scenarios to avoid results with overly large communities.

• However, community limit brings significant challenge when parallelizing Leiden.

Server 1

Experimental Evaluation

Novelty1: We design threads locks and

shared cache to lift the competition of

multiple vertices joining the community

with correctness assurance.

Novelty2: We adopt centralized computing

model and optimized processing order on

distributed servers to reduce communication

overhead with consistency guarantee.
∗These authors contributed equally to this work.

ParLeiden-S: single node version

ParLeiden-D: distributed version
Baseline-number (e.g. Leiden-1000)：
The number is community size upper limit.

Result 2: The quality difference is negligible and decreases over

iterations on ParLeiden-S(96 threads) and ParLeiden-D (2 servers).

Aggregate nodes

Server 1

Shared
community

data

Server 2

Data
synchron-

ization

Optimized
processing

order

…

Shared
community

data

Server n

Data
synchron-

ization

Optimized
processing

order

Lock

Lock

Parallel aggregate nodes

Datasets are from http://snap.stanford.edu/data/index.html

