
ParLeiden: Boosting Parallelism of Distributed Leiden Algorithm
on Large-scale Graphs

Yongmin Hu∗† Jing Wang∗†‡ Cheng Zhao† Yibo Liu†‡ Cheng Chen† Xiaoliang Cong† Chao Li‡
{huyongmin,zhaocheng.127,chencheng.sg,congxiaoliang}@bytedance.com,

{jing618, liuyib,}@sjtu.edu.cn, lichao@cs.sjtu.edu.cn
Douyin Vision Co., Ltd.† Shanghai Jiao Tong University‡

ABSTRACT
Leiden algorithm has demonstrated superior efficacy compared to
traditional Louvain algorithms in the field of community detection.
However, parallelizing the Leiden algorithm while imposing com-
munity size limitations brings significant challenges in big data
processing scenarios. We present ParLeiden, a pioneering parallel
Leiden strategy designed for distributed environments. By thread
locks and efficient buffers, we effectively resolve community join-
ing conflicts and reduce communication overheads. We can run
Leiden algorithm on large-scale graphs and achieve performance
speedup on up to 9.8× than baselines.

KEYWORDS
Leiden, parallelism, graph processing, distributed computing

1 INTRODUCTION
High-quality community searching and clustering on large graph
datasets has become a significant concern in both academia and
industry, in fields of social network analysis(SNA), network cen-
tralityand biology area[2, 3, 5]. Traag et al. proposed Leiden[4] in
2019 based on Louvain[2, 5], a more efficient algorithm with more
accurate community uncovering. Leiden guarantees the internal
community connection by adding refinement steps to search for
new sub-community in the move node phase. In scenarios of risky
community mining, Leiden supports the community size limita-
tion to narrow search scopes. With the explosion of data scale and
network complexity, distributed and multi-thread design of Leiden
algorithm becomes crucial to scaling the algorithm to larger graphs.

However, parallelizing Leiden is never simple. Themain difficulty
is that the naive parallel implementation can not guarantee the
equivalence with the original execution flow, which depends on
serial computation to ensure correctness, as shown in Figure 1-(a).
Existing works[1] also try to design parallel community detection
for high performance. However, their system performs unstable
speedup even sometimes has worse performance compared with
the single-thread design of the original Leiden[4]. Naively adopting
parallel interfaces may not bring performance benefits.

Conflict issues across multiple threads. Flexible maximum
community size limit in Leiden is designed to narrow the search-
ing scale but brings great challenges for parallelism design. When
a community cap is given, multiple nodes may apply to join the
community at the same time, which involves conflicts of commu-
nity updates, as shown in Figure 1-(b). The community updating
procedure in the parallel workflow can be totally different from the

∗These authors contribute equally to this work.

1

Try
communities

Check
comm_size：

Check
∆quality:

Update
community

Move
node:

Judge

(a). Single thread

Node1

Join C

2

Judge

Not join C

1

Judge

Join C

2

Judge

Join C

Conflict

(b). Multiple threads

1

Judge

Join C

2

Judge

Join C

Communication
cost

(c). Distributed computing

Conflict

Figure 1: The challenge of parallel Leiden algorithm.

hidden logic of node selection that is guaranteed by the serial com-
puting flow. In the original Leiden algorithm, each node transfers
all its neighbors by order of quality difference and selects the neigh-
bor with maximum quality improvement of joining the neighbor’s
community. Multiple threads generate isolated ordered values of
neighbors thus requiring thread locks to handle the joining conflict.
However, simply adopting signal-based thread locks cause unac-
ceptable performance degradation. Worsely, they can not ensure
the quality difference comparison in each atomic operation.

Data synchronization problem on distributed servers. Fur-
thermore, distributed parallel Leiden also faces the problem of data
consistency based on unacceptable communication costs, as shown
in Figure 1-(c). Parallelizing the Leiden algorithm involves commu-
nication and synchronization operations between multiple comput-
ing nodes. Vertices on different servers may need to join the same
community with size limitations and then update community in-
formation on each server. This involves multiple quality difference
comparisons and data synchronization across servers. The distri-
bution correctness requires the inclusion of distributed locks, but
generic distributed locks perform poorly on data synchronization.

In this work, we proposed parallel Leiden strategy ParLeiden for
high-performance distributed and multi-thread community detec-
tion on large graphs. 1) We design thread locks and shared cache to
lift the competition of multiple vertices joining the community with
correctness assurance. 2) We adopt parallel data caching, message
merging, and broadcast synchronizing to reducing communication
overhead with distributed data consistency guarantee.

2 PARLEIDEN DESIGN
Each iteration of Leiden algorithm consists of three phases: (1) lo-
cal moving of each vertex to label the to-be-joined community,
(2) refinement of node inside each community and generating
sub-communities, (3) aggregating the nodes in each refined sub-
community to construct a new graph. The move phase and refine
phase take most of the iteration that can be parallelized. Our frame-
work consists of two parts: monolithic thread-level parallelism and
distributed server-level parallelism. In Figure 2, The left shows the
execution flow on a single thread while the right shows the parallel
design with thread locks and shared-data cache on multiple threads.

SC ’2023, AUG, 2023, America Yongmin Hu∗† Jing Wang∗†‡ Cheng Zhao† Yibo Liu†‡ Cheng Chen† Xiaoliang Cong† Chao Li‡

High-quality community searching and clustering on large graph datasets has
become a significant concern in both industry [1,3] and academia[2,4,5].

Introduction & Background

• In this paper we explore the parallelism design of

Leiden algorithm on multi-thread monolithic

server and distributed servers.

• We design thread locks and efficient buffers to

solve community joining conflicts and reduce

communication overheads.

• Our system ParLeiden can handle significantly

larger graphs and achieves performance speedup

on up to 9.8× than baseline methods.

Challenges

ParLeiden Design

Conclusion Reference

Parallel challenges of Leiden Algorithm

1). Challenge 1: The correctness

• Concurrent workers face conflict upon reaching the limit of community size.

• Simple thread locks cannot handle the community updating procedure.

2). Challenge 2: The overhead

• Concurrent community updating always requires the newest quality value

for data consistency across threads and servers, causing many interrupts.

• Random community data access and synchronization across servers in

parallel environment causes unacceptable data communication cost.

Monolithic Thread-level parallelism Design

Fig 2: The main challenges of parallel Leiden: the data conflict and the communication cost.

• Leiden[4] is a SOTA algorithm based on Louvain[2, 5], a more efficient

community detection method with well-connected communities.

(1). Move phase: We use multiple

threads with proposed locks to

parallel process each node’s

movement to the neighbors. We

calculate the quality difference of

the leaving and joining community

to decide the community labels. We

update each node label iteratively

till convergence.

(2). Refine phase: We re-traversal

each community that is generated in

the move node phase with different

threads. The refinement will search

new communities only inside of

each community so the execution is

totally in parallel.

(3). Aggregate phase: We merge

the nodes in sub-communities in

the refine phase into a single vertex

and merge the inner and outer edges.

We use the basic parallel APIs to

aggregate the new graph.

(4). Repeat till convergence: We

search communities iteratively on

the new graph until there’s no

quality improvement on every

community.

We design ParLeiden, a fast parallel Leiden strategy that processes large-scale

graph data with multiple threads on distributed platforms.

Result 1: We can achieve almost equivalent quality

compared with Leiden on different community size

limit and different dataset.

ParLeiden can handle significantly larger graphs, surpassing the capacity of the baselines. We achieve performance

speedup on up to 9.8× than single thread baseline[2] with closed quality and 9.6× than KatanaGraph[3] in each iteration.

The evaluated baselines:

• Leiden[4]: Original Leiden algorithm

• KatanaGraph[1]: State-of-the-art parallel Leiden implementation

• ParLeiden: Our parallel Leiden algorithm

Result 4: The speedup of ParLeiden

over baselines on each iteration.

[1] KatanaGraph. https://katanagraph.ai/.

[2] Sayan Ghosh et al . 2018. Distributed louvain algorithm for graph

community detection. In IPDPS.

[3] Thomas Magelinski et al . 2021. Measuring node contribution to

community structure with modularity vitality. IEEE TNSE (2021).

[4] Vincent A Traag et al . 2019. From Louvain to Leiden: guaranteeing

well-connected communities. Scientific reports (2019).

[5] Jianping Zeng and Hongfeng Yu. 2018. A Scalable Distributed

Louvain Algorithm for Large-Scale Graph Community Detection. In

CLUSTER.

• The distributed parallel design of the Leiden algorithm becomes crucial as

the size of graph data grows much larger.

ParLeiden: Boosting Parallelism of Distributed Leiden Algorithm on Large-scale Graphs
Yongmin Hu *1, Jing Wang *1,2, Cheng Zhao 1, Yibo Liu1,2, Xiaoliang Cong1, Cheng Chen1, Chao Li2

{huyongmin,zhaocheng.127,chencheng.sg,congxiaoliang}@bytedance.com, {jing618, liuyib}@sjtu.edu.cn, lichao@cs.sjtu.edu.cn

ByteDance1, Shanghai Jiao Tong University2

1

Judge

(a). Single thread

Join C

2

Judge

Not join C

1

Judge

Join C

2

Judge

Join C

Conflict

(b). Multiple threads

1

Judge

Join C

2

Judge

Join C

Communication
cost

(c). Distributed computing

Conflict

Vertex 1

Vertex 2

M
o

ve
 p

h
as

e：

(multiple threads)

T
im

el
in

e

It
er

at
io

n
 ×
𝑁
𝑚
𝑜
𝑣
𝑒

Check ∆quality

Check comm_size

Move node

Update community

…

Vertex 1

Check ∆quality

Check comm_size

Move node

Update community

Vertex T

Check ∆quality

Check comm_size

Move node

Update community

Vertex V

…

Vertex T+1 Vertex 2T
…

Vertex (V-T+1)
…

Vertex V…

Lock

(single thread)

Lock Lock

CAS-based lock

Shared community data

Shared ∆quality list (ordered)

Random ∆quality

Update subcommC
o

m
m

 1

R
ef

in
e

p
h

as
e：

C
o

m
m

 X

…
…

Vertex 1

Vertex 𝑉𝐶

…
It

er
at

io
n

s

…

…

Community 1 Community X…

Random ∆quality

Update subcomm

Vertex 1

Vertex 𝑉C1

It
er

at
io

n
s

…

Random ∆quality

Update subcomm

Vertex 1

Vertex 𝑉C𝑋

It
er

at
io

n
s

…

Fig 1: The execution workflow of Leiden Algorithm.

1

4 3

2

5

6

7

Move phase Refine phase Aggregate phase

1

4 3

2

5

6

7

1

4 3

2

5

6

7

14

5 7

Iteration × 𝑁𝑙𝑒𝑖𝑑𝑒𝑛

Distributed Server-level parallelism Design

1 42 3

Queue

Threads

Vertices

L L L LLocks

CAS-based lock

Thread cached data

addr. old_v new_v

upper_limit(comm_size)

Community ∆Quality

Add to community

…
Server 2

Server n

L L L L

Communities

Parallel send

①I

I
I Imerge

Server Cached data Broadcast

Recv&Update

Parallel receive②

ParLeiden Workflow

Fig 3: CAS-based thread locks with cached intermediate data. Fig 4: Server-level shared cache and transferred data merging.

Result 3: ParLeiden shows good speedup when scaling up with

multiple threads and scaling out with multiple servers.

Fig 5: ParLeiden workflow compared with single-thread Leiden.

• We design CAS-based thread locks to handle the

joining conflict of joining the same community.

• We use shared memory to cache the community and

quality information of each traversed node.

• We adopt centralized distributed computing model

including message merging and parallel broadcast.

• We optimize the processing order of vertices to reduce

the cycle synchronization cost across servers.

• Community size limitation[4] is an essential requirement in risk control and

anomaly detection scenarios to avoid results with overly large communities.

• However, community limit brings significant challenge when parallelizing Leiden.

Server 1

Experimental Evaluation

Novelty1: We design threads locks and

shared cache to lift the competition of

multiple vertices joining the community

with correctness assurance.

Novelty2: We adopt centralized computing

model and optimized processing order on

distributed servers to reduce communication

overhead with consistency guarantee.
∗These authors contributed equally to this work.

ParLeiden-S: single node version

ParLeiden-D: distributed version
Baseline-number ：
The number is community size upper limit.

Result 2: The quality difference is negligible and decreases over

iterations on ParLeiden-S(96 threads) and ParLeiden-D (2 servers).

Aggregate nodes

Server 1

Shared
community

data

Server 2

Data
synchron-

ization

Optimized
processing

order

…

Shared
community

data

Server n

Data
synchron-

ization

Optimized
processing

order

Lock

Lock

Parallel aggregate nodes

Figure 2: The comparison between single-thread Leiden al-
gorithm and multi-thread ParLeiden design.

Monolithic Thread-level parallelism. We design thread locks
to satisfy the original data updating order as much as possible. At
the move node phase, We design CAS locks with upper bounds
to resolve community joining conflicts in each thread under the
condition of maximum community size limitation. We use shared
memory to cache quality difference values and community updates
for multi-thread data synchronization during node-level parallelism.
At the refine node phase, each node re-searches the neighbors and
joins the community that is still under the limited community size.
We use multi-threads to directly process multiple communities for
community-level parallelism, and we use shared memory caching
to synchronize community update data.

Distributed Server-level parallelism. On distributed servers,
We adopt hot data caching to improve execution efficiency. We use
a Gemini-like approach to slice the edge data to multiple machines,
keep a copy of community information related to each machine
(node state, community information, etc.), and distribute new data
to other machines in parallel after the current machine generates
new data. The traversal order of the machines is randomly deter-
mined by MPI. The inner-server data conflict and consistency are
guaranteed by monolithic thread-level parallelism design.

At the move node phase, we use hot data caching with parallel
broadcast synchronization to optimize the distributed execution
process. We cache the vertices that will join the community and
their quality information in a single machine to support fast compu-
tation. We traverse each machine sequentially and synchronize the
updated community information to other machines in parallel to
ensure that the information on each machine is up-to-date. At the
refine node phase, we optimize data transfer efficiency and reduce
communication overheads by combining transferred data and par-
allel broadcast synchronization. We optimize the processing order
of vertices to reduce the cycle synchronization in BSP (Bulk Syn-
chronous Parallel) computing model. We combine the small data
into aggregated data chunks to further reduce the communication
cost. We also synchronize updated community information to other
machines by parallel broadcasting.

Graph Dataset Abbr. |𝑉 | |𝐸 | Size (GB)

Amazon AM 334863 925872 0.1
Soc-Pokec SP 1632803 30622564 0.41
LiveJournal LJ 3,997,962 34,681,189 0.66
Twitter TW 17,069,982 476,553,560 18.08

Friendster FT 65,608,366 1,806,067,135 27.16

Table 1: Evaluated graph datasets.

Dataset Leiden KatanaGraph Parleiden-S Parleiden-D

Amazon 13.58 4.93 1.53 6.87
Soc-Pokec 312.39 282.41 29.47 25.74
Livejournal 593.99 448.38 48.46 59.77
Twitter∗ >24h >24h 686.73 152.76

Friendster∗ >24h >24h 1268.99 279.83
Amazon-5k 13.90 - 1.54 14.19
Soc-Pokec-5k 496.93 - 36.25 96.28
Livejournal-5k 729.41 - 45.29 111.82
Twitter-5k∗ >24h - 719.68 200.491

Friendster-5k∗ >24h - 1174.03 284.50

Table 2: Executing time(s) on different graph datasets. The
content within the parentheses after the dataset indicates
the limit on community size, while no parentheses indicate
an unlimited size. KatanaGraph does not supprt limiting
community size by marking ‘-’. Over ‘*’ datasets, quality dif-
ferences in the move node phase are set as 0.01, while the
others are set as 0.

3 EVALUATION
In the evaluation, we use a cluster with 8 real machines to evaluate
the performance of our design. Each server is equipped with 48 core
CPU to handle 96 threads. We evaluate 5 graph datasets from SNAP
as shown in Table 1. We compare ParLeiden (single node version
ParLeiden-S and distributed version ParLeiden-D)with the Orig-
inal Leiden[4] implementation (without parallelism) Leidenalg
and the implementation version of the baseline design on Katana-
Graph[1] framework. We can achieve equivalent quality under
different community sizes. Table 2 presents the detailed latency of
our work and the baselines with and without community size limita-
tions. Overall, we can support large graphs to search communities.
In each iteration, we perform up to 9.8 × faster than single-thread
baseline and 9.6 × faster than KanataGraph in monolithic and dis-
tributed scenarios. Our distributed design uses 8 servers and further
speeds up the single-node design on large graphs. For more details
on the evaluated results, please refers to our poster.

Conclusion. We improve the overall performance of Leiden
algorithm on large-scale graphs by fine-grained parallelism design.
We will continue to improve our design in the future work.

REFERENCES
[1] 2023. KatanaGraph. https://katanagraph.ai/.
[2] Sayan Ghosh et al. 2018. Distributed louvain algorithm for graph community

detection. In IPDPS.
[3] Thomas Magelinski et al. 2021. Measuring node contribution to community

structure with modularity vitality. IEEE TNSE (2021).
[4] Vincent A Traag et al. 2019. From Louvain to Leiden: guaranteeing well-connected

communities. Scientific reports (2019).
[5] Jianping Zeng and Hongfeng Yu. 2018. A Scalable Distributed Louvain Algorithm

for Large-Scale Graph Community Detection. In CLUSTER.

https://katanagraph.ai/

	Abstract
	1 Introduction
	2 ParLeiden Design
	3 Evaluation
	References

