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Today’s GPU graph processing frameworks face scalability and efficiency issues as the graph size exceeds
GPU-dedicated memory limit. Although recent GPUs can over-subscribe memory with Unified Memory
(UM), they incur significant overhead when handling graph-structured data. In addition, many popular pro-
cessing frameworks suffer sub-optimal efficiency due to heavy atomic operations when tracking the active
vertices. This article presents Grus, a novel system framework that allows GPU graph processing to stay com-
petitive with the ever-growing graph complexity. Grus improves space efficiency through a UM trimming
scheme tailored to the data access behaviors of graph workloads. It also uses a lightweight frontier structure
to further reduce atomic operations. With easy-to-use interface that abstracts the above details, Grus shows
up to 6.4X average speedup over the state-of-the-art in-memory GPU graph processing framework. It allows
one to process large graphs of 5.5 billion edges in seconds with a single GPU.
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1 INTRODUCTION

Processing large-scale graph data is a fundamental procedure of machine learning, data mining,
scientific computing, and other important areas. The continued growth of graph-structured data
today creates a crucial need for fast, scalable computing on parallel architectures that have limited
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resources. Due to their massive parallelism and high-bandwidth memory access, GPUs have be-
come popular accelerators for modern graph applications. Nevertheless, the available GPU mem-
ory capacity is often limited to tens of gigabytes even for some high-end data-center-class GPUs
[45]. As graph scales, it can easily outgrow the memory capacity of the GPU.

Traditionally, graph processing framework on a GPU can only access data reside in its device
memory. It is programmers’ responsibility to manually manage data location, which makes it very
difficult to achieve efficiency while ensuring correctness. To solve this issue, vendors have pro-
posed new memory management models. For example, Compute Express Link [51] aims to create
a coherent memory pool. NVIDIA [46] and AMD [12] separately introduced the idea of Unified
Memory (UM), which defines a common coherent memory space for all processors. With UM,
one can over-subscribe GPU memory [49] and access the virtual memory of the CPU. It relies on
GPU driver and hardware to automatically control data transfer, thus relieving programmers from
manually moving data. In other words, UM allows GPU programs, including graph applications,
to conveniently process larger dataset with minor code changes.

Over-subscribing memory resources for graph processing on GPU is not as simple as it seems.
There has been prior work [33] showing that naively adopting UM brings significant overhead
even for in-memory computing workloads. When the working set becomes larger than the GPU
memory, pages might thrash between the CPU and GPU, resulting in even higher overhead. CUDA
8.0 has introduced several data usage hints [49] that provide certain guidelines for efficient page
migration of UM. However, existing GPU graph processing frameworks can hardly benefit form it
due to the highly diversified, irregular data access patterns of graph workloads.

To make the best use of the unified memory resource, a graph processing framework must
balance space efficiency and execution efficiency. Many prior arts leverage space-inefficient graph
format or auxiliary data to assist load balancing and memory coalescing. For example, Cusha [28]
introduces two ordered edge-centric formats (G-Shards and Concatenated Windows (CW)) for
coalesced memory access. SEP-graph [60] adopts a Push-Pull direction switch optimization, which
needs to store both compressed sparse row (CSR) and compressed sparse column (CSC) formats for
one graph. These optimizations have doubled the GPU memory consumption, leading to severely
limited processing ability (i.e., low scalability) as the size of the graph grows.

In this work, we thoroughly analyze the performance of graph processing on UM-enabled GPUs.
We mainly focus on the scenario where the graph datasets are larger than the GPU memory ca-
pacity while they can still fit into the main memory. We characterize memory-hungry graph pro-
cessing applications with UM in the simulated GPU-sharing environment. Our characterization
shows several noteworthy patterns and insights. We revisit different layers of the existing GPU
graph processing frameworks and propose Grus, an elaborately re-designed framework that aims
to unleash the performance potential of CPU-GPU architecture.

The key idea behind Grus is to jointly manage the unified memory and atomic operations. In
other words, our framework has two wings—one is UM optimization and the other is execution
optimization. Not until both wings are equally developed can Grus achieves its best performance.
We have devised a special computing abstraction (the body) for Grus: Prepare-Update-Generate. It
provides a user-friendly interface. Users can write graph applications with tens of lines of code.

Our major contributions are summarized as follows:

e We characterize graph processing workloads on UM-enabled GPUs. We discuss the benefits
and limitations of several key UM performance tuning methods.

e We propose a tailored UM management scheme (Grus’ left wing). Our design can slim the
memory demand for space efficiency, which brings significant benefits for large-scale graph
processing in our experiment. We also leverage an adaptive UM management policy to
supervise UM page movement between the CPU and GPU.
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Fig. 1. A simplified CPU-GPU memory architecture that supports Unified-memory page migration.

e We propose a lightweight kernel execution module (Grus’ right wing). Grus uses a novel
bitmap-directed frontier (BDF) structure. It aims to replace part of the atomic operations
with low-cost memory write operations. Meanwhile, Grus leverages a lightweight execution
model for load balancing.

e We abstract Grus into an easy-to-use interface and experiment with it heavily. We show that
Grus achieves up to 6.4x average speedup over several state-of-the-art in-memory graph
frameworks, and up to 5%, 19X speedup over two out-of-GPU-memory graph frameworks.
We also perform a detailed evaluation to analyze the performance bottleneck.

The rest of this article is organized as follows. Section 2 introduces the background. Section 3
characterizes the performance implications of UM. Section 4 proposes Grus, including UM man-
agement, runtime optimization, and programming interface. Section 5 introduces the experimental
methodologies. Section 6 presents the results and analysis. Section 7 discusses related work and
Section 8 concludes this article.

2 BACKGROUND

UM defines a common coherent memory space for all processors to simplify the usage of memory.
We use NVIDIA’s terminology to describe GPU architecture in this article, while most of the ideas
apply to GPUs from other vendors as well. NVIDIA supports UM since CUDA 6.0, and terms it Uni-
fied Memory. It allows data to migrate across the main memory and GPU memory automatically,
via hardware Page Migration Engine for Pascal architecture and newer GPUs.

UM provides a convenient interface to relieve the users of manually moving data from the host
main memory to the GPU memory. Figure 1 depicts a simplified CPU-GPU memory architecture
supporting UM. When a processor (CPU or GPU) accesses pages that are not in its memory, it
triggers page faults and stalls the executions of threads until the requested pages have migrated.
GPUs have multiple levels of translation lookaside buffer (TLB). The system uses a set of Miss
Status Handling Registers (MSHRs) to record the page faults. Page fault locks the TLB for the cor-
responding streaming multiprocessor (SM), and any new translations of this TLB will be stalled
until all faults are resolved. If multiple fault messages are generated for the same page, then the UM
driver will process these faults, remove duplicates, updates mappings and transfer the data. The
migrated page size ranges from 4 KB to 2 MB (varies on different systems). According to limited
open resources [56], Pascal GPUs leverage a tree-based hardware prefetcher to assist page migra-
tion. Ganguly et al. [17] deduced that the GPU Memory Management Unit (GMMU) determines
the migrated page sizes based on the requested data size and shape in each 2 MB large page. Even
further, Pascal or newer architecture GPUs support 49-bit virtual addressing, which covers the
48-bit virtual address spaces of modern CPUs. This allows a GPU to access all the virtual memory
of the entire system.

A major limitation of UM is that it does not eliminate the latency overhead between CPU and
GPU. Landaverde et al. [33] investigated the performance of UM on the Rodinia Benchmark suite
[9] and found that the performance overheads are significant for the majority of applications.
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Fig. 2. Evaluation on BFS of Tigr [54] with different GPU memory configurations. The graph of scale x has
2% vertices and 2¥* edges, generated with PARMAT [27]. We limit the available GPU memory capacity to
1 GB to investigate GPU memory over-subscription.

The overhead of UM comes from fault handling and transfer latency. The fault handling overhead
latency is around 45 ps [17]. There is a constant activation overhead for every transaction through
the PCI-e interface regardless of the transfer size. Accessing large non-resident memory could
result in large numbers of page faults, bringing significant overhead.

3 ANALYZING GRAPH PROCESSING WITH UM

In this section, we characterize UM performance under graph processing workload and evaluate
the effectiveness of several UM tuning options.

3.1 Impact of Unified Memory

To understand the impact of UM on graph processing, we investigate Tigr [54], a state-of-the-art
GPU-based graph processing framework. As shown in Figure 2(a), we mainly consider three dif-
ferent memory management strategies. Denoted as Normal in this article, the original Tigr system
uses basic memory allocation strategy, namely, explicit CPU-GPU memory copy. To prevent CPU-
side data paging-out and achieve the best transfer rate, we pin graph data in the main memory. We
also modify Tigr and evaluate two UM-enabled configurations denoted as UM and UM_PF, respec-
tively. For these two configurations, Tigr can over-subscribe the GPU memory. UM_PF indicates
UM prefetching is invoked on memory region storing graph data. In this case, data in the UM
space can explicitly migrate to the physical memory of the desired device immediately.

Figure 2(b) shows our evaluation results. We present the normalized execution time of Breadth
First Search (BFS) on Tigr with different configurations. The graph sizes are smaller than the GPU
memory capacity for graphs that have a scale less than 23. We also consider graphs of larger scales
(24~25); in this case the system must over-subscribe GPU memory. From the figure, we can see
that Normal always yield the best performance for graphs of moderate scales (19~23). UM takes
1.9~4.3X time, compared to Normal. This is because the page fault overhead and PCI-e interface
overhead dominate when graph data size is relatively small. When processing a bigger graph, the
large working set partially amortizes those overheads. The elapsed time of UM_PF becomes closer
to Normal (e.g., 22 and 23).

An important observation is that UM_PF takes about 2.3X execution time compared to Normal for
graphs of small sizes (i.e., 19 to 21); the measured prefetching throughput is also low. This indicates
that prefetching small size of data does suffer from overheads. When the data size becomes larger,
UM prefetching achieves similar throughput compared with explicit memory copy. Finally, as for
graphs of very large scale (24 and 25), Normal fails to process them, since the GPU cannot allocate
data larger than the available memory capacity. UM_PF is slightly slower than UM. This is because
a naive prefetching scheme will bring in graph data as much as possible, and it can exhaust idle
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GPU memory space. This results in additional page evictions to CPU before pages are migrated to
GPU.

Summary: different kinds of memory allocation methods can achieve entirely different perfor-
mance. Specifically: (1) Normal allocation achieves the best performance if data can fit into GPU
memory. (2) Adopting UM allows one to process large graphs at the cost of performance degra-
dation, depending on the data size. (3) UM may benefit from prefetching due to the reduction of
page fault when data can fit into GPU memory. (4) Prefetching could harm UM performance if the
GPU memory is over-subscribed.

3.2 Implications of Unified-memory Hints

CUDA introduces several APIs to provide memory usage hints for the runtime since version 8.0.
Programmers can specify memory hints through cudaMemAdvise. These hints are expected to
guide the system driver so that the memory access performance can be improved.

e cudaMemAdviseSetAccessedBy (AB) indicates that the data will always be mapped into a
specified processor’s page tables if possible. When the data is migrated, the mapping will
be updated accordingly.

e cudaMemAdviseSetPreferredLocation (PL) sets the preferred location (CPU or GPU) for
a range of data. If another processor wants to access the memory region, then the data will
not migrate from the preferred location.

e cudaMemAdviseSetReadMostly (RM) implies that the data will be mostly read and occa-
sionally written to. It lets the driver create read-only copies of that data, and then send
copies to other processors rather than migrate.

If applications’ data access patterns are known ahead, then the programmer may choose one of
the memory hints to optimize performance. However, it is not straightforward to choose appro-
priate memory hint of graph applications.

To evaluate the optimization effectiveness of memory hints, we evaluate four algorithms on
three graphs. These evaluated algorithms are implemented in a queue-based frontier execution
style with the warp-centric load-balancing policy on CSR formatted graphs. An array stores the
corresponding vertex labels (distance from the source for SSSP, for instance). We set the same
hints on graph data, frontier and label array for each configuration. On the same memory region,
at most one hint can take effect. Hints can be used along with prefetching, thus we also combine
these hints with UM prefetching. We provide detailed evaluation methodology in Section 5.

In Table 1, we show the normalized elapsed time of graph workloads under different UM con-
figurations. One of the key observations is that: prefetching is good if all the data can fit into the
GPU memory, and it almost always brings overhead when the GPU memory is over-subscribed. This is
easy to understand as prefetching makes all data resident on GPU for relatively small graphs, thus
the following processing suffers no overhead of fault handling and page migration. However, if the
GPU memory is over-subscribed, prefetching the whole range of data may result in a situation that
data to be used in the near future cannot reside on GPU due to the indiscriminate prefetching. In
other words, PF may aggravate the thrashing. AB greatly contribute to performance improvement
when over-subscription exists. For example, it can reduce the normalized elapsed time except for
BFS on the UK-union dataset. In the meantime, AB also increases elapsed time on some graph es-
pecially for connected components (CC) on SK-2005 without over-subscription. Differently, PL has
a minor impact on performance on all of the graphs and algorithms, compared with other hints.
RM improves performance at a certain level as long as over-subscription exists, but not as much as
AB. When combined with prefetching, PL shows little impact and it has similar performance with
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Table 1. Normalized Elapsed Time Under Different Memory Hints

. Over-sub. Evaluated UM Configurations
Dataset | Algorithm

Rate um | pF | AB [ pPL | RM [ Pr+AB [ PF+PL | PF+RM

BFS - 1.0 0.62 1.02 1.00 0.98 0.70 0.63 0.62

Friendster CC - 1.0 0.51 0.65 1.02 1.03 0.55 0.53 0.52
PR - 1.0 0.84 0.85 1.00 1.01 0.87 0.85 0.85

SSSP 1.4 1.0 1.02 0.15 0.97 0.68 0.16 0.98 0.66

BFS - 1.0 0.55 1.1 1.08 1.03 0.66 0.55 0.56

SK-2005 cC B 1.0 043 EEEM 101 1.07 0.50 0.45 0.44
PR - 1.0 0.51 1.29 0.99 1.03 0.56 0.53 0.53

SSSP 1.3 1.0 1.00 0.28 0.96 0.65 0.13 1.01 0.67

BFS 2.1 1.0 1.49 0.99 1.02 0.80 0.78 1.52 1.26

UK-union CC 2.1 1.0 1.1 0.25 0.93 0.71 0.34 112 0.80
PR 2.1 1.0 1.05 0.18 1.00 0.70 0.20 1.05 0.75

SSSP 3.9 1.0 1.02 0.15 0.96 0.61 0.21 1.01 0.70

Geometric 8 3 6
mean 1.0 0.79 0.53 0.99 0.84 0.40 0.80 0.67

UM is the UM baseline. PF is with prefetching. AB is for cudaMemAdviseSetAccessedBy. PL is for
cudaMemAdviseSetPreferredLocation. RMis for cudaMemAdviseSetReadMostly. Over-sub. rate is the ratio
between the dataset size and the available memory capacity when GPU memory is over-subscribed.

PF. This is the same for RM for in-memory scenarios. For over-subscribed scenarios, PF+RM is better
than PF, but is not as good as AB or PF+AB.

Insights: These hints have significantly different impacts on the performance. AB maps pages
into GPU’s page table, which greatly reduces the overhead of accessing absent pages. It brings
significant speedup for all over-subscription and some in-memory experiments. This indicates that
mapping data to GPU’s page table in advance to reduce the fault handling overhead is crucial for
performance if we cannot prefetch all the data to the GPU memory. RM shows moderate speedup for
over-subscription experiments as the pages storing read-only graph structure data need not to be
transferred back to the main memory when they are evicted. However, as only one GPU accesses
those data during these experiments, there are no other processors (GPUs or CPUs) trying to access
those data. Thus, PL shows little impact on the performance compared with UM.

In summary, PF, AB, and PF+AB are more likely to yield better performance. The runtime are
strongly correlated with memory over-subscription status as well. If there is enough GPU mem-
ory, then prefetching all data into GPU ahead is good for performance. When the GPU memory
is over-subscribed, setting data region as AB or AB combining with prefetching may achieve the
best performance. Based on these observations, we present our UM management strategy in Sec-
tion 4.1.2.

4 THE GRUS FRAMEWORK

From the above analysis, we can see that designing UM-efficient, high-performance graph com-
puting system can be a non-trivial task. In this section, we introduce how Grus strives to achieve
this goal with a novel, multifaceted approach.

In Figure 3, we depict the system architecture of Grus. On top of the CPU-GPU heterogeneous
computing environment, Grus presents two equally important modules: an UM management mod-
ule (i.e., the left wing of Grus) and an execution optimization module (i.e., the right wing of Grus).
The UM management module is to reduce UM overheads especially when the memory is over-
subscribed. It includes space-efficient data structures to slim memory usage and an adaptive UM
policy to reduce the overhead caused by UM. The execution optimization is responsible for effec-
tively mapping graph processing operations to the GPU hardware at runtime. It includes a novel
frontier structure to track active vertices with low overhead and a load-balancing strategy for effi-
cient GPU execution. Eventually, Grus abstracts the two modules into a Prepare-Update-Generate
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interface. With this interface, a graph processing application can be easily implemented in a few
lines of code with high efficiency.

4.1 Grus’ Left Wing: Unified-memory Management

Large graph processing is known as memory-hungry. It features massive, fine-grained memory
access. Minimizing the overhead brought by unified memory is the top priority of our design. In
addition to this, Grus also tries to reduce the pre-processing and data-transfer overhead that are
largely overlooked in prior works.

Grus intends to optimize UM in three perspectives: (1) Minimizing the amount of migrated data.
Grus reduces memory footprint by using space-efficient graph format and eliminating unnecessary
auxiliary data. In this way, fewer UM pages will migrate under the limited GPU memory capacity.
(2) Reducing the number of page faults. Grus selectively prefetches graph data to the GPU so that
the high-priority data (or all data if possible) are resident on the GPU to reduce the first-access
latency. (3) Reducing page migration overhead. When the GPU memory is over-subscribed, Grus
maps all the graph data in the GPU page table with the AccessedBy hint at the beginning. As
a result, GPU can directly access the absent pages and evict pages to the main memory without
suffering from the fault handling overhead.

4.1.1  Memory Usage Trimming. To illustrate why space efficiency is important for GPU graph
processing with UM, we evaluate the performance of Cusha [28] and Tigr [54], two representa-
tive frameworks, using edge- and vertex-centric graph format, respectively. We modify them to
enable over-subscription in the context of UM. Cusha proposes two edge-centric graph formats
for coalesced memory access. Its G-Shard format represents each edge with a 4-tuple. Tigr focuses
on load-balancing, and it leverages a virtually transformed graph format similar to compressed
sparse row (CSR). Thus, Cusha takes more than double memory to store the same graph compared
to Tigr.

As Figure 4 shows, the evaluated two frameworks have similar runtime trend: It grows linearly
if there is no memory limit. When the GPU memory limit is set, the runtimes of both Cusha
and Tigr may grow super-linearly at a certain time. This is because they start to over-subscribe
GPU memory and suffers from the UM page thrashing severely when the memory consumption
is larger than the available memory capacity. The difference is that Cusha starts to over-subscribe
from graph with 30 million edges while Tigr starts to over-subscribe from graph with 80 million
edges as Cusha needs more memory to process the same graph compared with Tigr. These two
frameworks take comparable runtime for small graphs (with 10 or 20 million edges). But when
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Fig. 5. Access pattern of different data structures for BFS.

Cusha starts to over-subscribe GPU memory, their performance gap becomes significantly large.
Therefore, for two comparable graph processing framework designs, the space-efficient one has
significant performance advantages for large graph processing with UM over-subscription.

Some graph processing frameworks are not entirely space-efficient even though they do use CSR
(or other compressed formats) to store graph. For example, SEP-Graph [60] stores both CSC and
CSR format on GPU to enable their Push-Pull direction switch optimization. Through this method,
the execution time on GPU is reduced at the cost of twice of the GPU memory requirement. It is
justifiable for processing smaller graphs, which takes less than half of the GPU memory, whereas
limits the capacity of processing large graphs more severely. Transferring twice of graph memory
makes it even worse in terms of the total runtime.

Grus prioritizes space-efficiency in its implementation. It leverages CSR as the underlying graph
structure. Besides this, Grus reduces memory consumption for other runtime data structures. For
example, SIMD-X [36] leverages a just-in-time task management approach for load-balancing. In
its implementation, it reserves more than 4 * 18|V| bytes memory for its frontiers in case of fron-
tiers overflow, where |V| is the vertex number and vertex indices are in 4-byte format. However,
bitmap-directed frontier of Grus only needs less than 5|V| bytes of memory. Doing so allows Grus
to improve space-efficiency and reduce the overhead resulted from UM over-subscription. Mean-
while, Grus enjoys less data transfer overhead from the main memory to the GPU memory.

4.1.2  Adaptive UM Policy. A typical graph processing application involves three type of data:
graph data, objective property data, and runtime data storing active information (frontiers). When
using CSR as the graph format, graph data includes vertex offset and edge. The objective property
data refers to distance values from the source vertex for BFS, or rank values of vertices for PageR-
ank. These data structures have different memory access patterns, summarized in Figure 5(a).

We characterize a BFS application from the SHOC Benchmark Suit [11] on a real-world graph
and collect the memory trace with a GPU simulator [58]. This BFS application uses CSR graph
format and warp-centric execution, similar to Grus. As Figure 5(b) shows, the pages of different
memory regions have vastly different access numbers. The property array also acts as the frontier
to indicates active vertices in their implication. It is most frequently accessed. The vertex offset
data is second frequently accessed. The edge data is relatively least frequently accessed. The access
numbers of the edge data regions also vary.

Based on the above observations, Grus manages the data structures with priorities. The frontiers
and objective property array are most frequently accessed and updated, hence they are given the
highest priority. Since the vertex index array of CSR is less frequently accessed and read-only, it
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ALGORITHM 1: Priority-based memory management algorithm

Function SetMemPolicy():

GPUIsFull=false;

availGPUMemSize = getAvailGPUMemoryCapacity();

for Data in {VertexProperty, VertexOffset, Frontier, Edge} do

if not GPUIsFull then

if Data.Size < avail GPUMemSize then
UnifiedMemPrefetchToGPU(Data, Data.size);
availGPUMemSize -= Data.size;

else
GPUIsFull=true;
SetUnifedMemAdvise(Data, AccessedBy);
UnifiedMemPrefetchToGPU(Data, 7 * avail GPUMemSize);

end

else
‘ SetUnifedMemAdvise(Data, AccessedBy);
end

end

has medium priority. The edge array (and the weight array) of CSR is least frequently accessed
and large in size; hence, we assign it the lowest priority.

As prefetching UM achieves close bandwidth with explicit memory copy for large memory re-
gions, we allocate CSR representation of graph dataset, property array and the frontier in UM for
all graphs. Once Grus has loaded the graph from the storage, it checks the current available GPU
memory capacity and chooses the corresponding policy for data structures one by one in order
of priority. If there is enough space for the target structure, then Grus prefetches the entire mem-
ory region. Otherwise, Grus prefetches the data structure partially to occupy part of the memory,
leaving a portion of the memory available. We denote the prefetching ratio as 7. Prefetching data
with a threshold 7 rather than exhausting the GPU memory is to prevent the evictions resulted
from accessing non-resident data while GPU memory is full at the beginning. Graph algorithms
can be divided into two categories. The first category includes the traversal algorithms that one
source vertex is active at the first iteration (e.g., BFS and SSSP). The second category includes algo-
rithms that all vertices are active at the start (e.g., CC and PageRank), denoted full-active algorithm.
For traversal algorithms, Grus prefetches edge data chunk containing edges of the source vertex
with a relatively small 7 as the actual traversal is not known ahead. For full-active algorithms,
Grus prefetches edge data chunk from the start with a relatively large 7 as all edges need to be
processed in the first iteration. Empirically, we set 7 as 0.5 and 0.8 for traversal algorithms and
full-active algorithms in this article, respectively. We provide a validation for this in Section 6.3.
After that. Grus sets the AccessedBy hint for it and the remaining structures with lower priorities.
Algorithm 1 shows the priority-based UM management algorithm.

Note that the latest official CUDA (version 10.2) cannot successfully allocate of UM larger than
the physical capacity of the main memory yet. This is because UM pages are pinned on the X386
platform. As a proof-of-concept prototype implementation, Grus assumes that the graph data can
fit into the main memory at present. There are researches on adding support to map data on NVM
SSD to the Unified Memory space (similiar to mmap) [7, 40]. Therefore, Grus can be extended to
process graph larger than physical memory capacity combining with those works.
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Fig. 6. One iteration of the BFS algorithm in different styles (Gunrock style or our BDF).

4.2 Grus’ Right Wing: Execution Optimization

4.2.1 Bitmap-Directed Frontier. In the context of graph processing, the frontier structure has a
remarkable impact on performance. There have been several papers [36, 42] investigating the per-
formance of different frontier structures: Bitmap, Unsorted Queue, Sorted Queue, and so on. Bitmap
frontier is relatively lightweight as it simply invokes kernel on all vertices and then inspects the
active state of vertices. It is inefficient when the majority of vertices are not active. Queue-based
frontiers only assign threads to process active vertices. However, enqueuing vertices to the frontier
often involves expensive atomic operations. These frontiers have performance advantages in cer-
tain scenarios. For example, Gunrock [63] leverages a queue-based frontier. During processing, its
Advance operation enqueues vertices to the frontier. Then, its Filter operation filters out undesired
items in the frontier. Both Advance and Filter require a large number of expensive atomic opera-
tions, which need to be carefully trimmed to accommodate more computing tasks. Even though
there has been prior work [36] on using reduction operations instead of atomic operations, it heav-
ily relies on block-level synchronization and software global barrier, which also introduce extra
overhead.

To overcome the shortcomings of previous frontier structures, we introduce a novel lightweight
BDF structure. This structure aims to utilize low-cost memory write operation to reduce expen-
sive atomic operations. It consists of a queue-based frontier and a bitmap. As GPU threads cannot
concurrently write to adjacent bits without involving atomic operations while preserving correct-
ness, the bitmap uses a byte for each vertex to indicate whether it has been updated in the current
iteration or not. When Grus updates the labels of some vertices, it writes the byte corresponding
to these vertices to 1, indicating active. After processing all the active vertices, Grus computes the
new queue by scanning over the bitmap, and resets the bitmap to 0s.

Note that the space overhead of using one byte rather than one bit for each vertices is negligible
in terms of the total memory consumption of graph algorithms as the number of vertices is much
smaller than the number of edges for the power-law graphs. Compared with the naive queue-
based frontier, BDF is more space-efficient as it only requires a queue and a bitmap while other
implementations require ping-pang queues (i.e., two queues) to store the frontiers for the current
and the next iteration. Besides this, BDF is expected to reduce expensive atomic operations.

To illustrate how BDF works, we compare it with Gunrock, using the BFS algorithm as an ex-
ample. BFS algorithm is to compute the distance of all vertices from the source vertex. As Figure 6
shows, vertex 0 and vertex 1 are in the current frontier at the beginning. Vertices 2, 3, and 4 are
neighbors of Vertices 0 and 1, and can be visited by both vertices 0, 1. Thus, they could be added
to the frontier with atomic operations multiple times if they are processed by Gunrock. After this,
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Gunrock filters out redundant items with scan-based operations and generate the new frontier. As
for Grus, it updates the new labels of visited vertices, and it writes the indicative byte of updated
vertex to 1. When the updating finishes, Grus gets the new frontier by scanning over the bitmap.
The effect of repeatedly setting a byte of the bitmap to 1 is identical to a one-time setting, and
therefore BDF will not get redundant items in the frontier.

Given the above design, the overhead of generating the frontier in Grus can be expressed as

CGrus ~ |Uupdated| * Catomic t Nupdate * Cwrite, (1)

where |v,pdareql is the number of updated vertices, catomic is cost of one atomic operation, n,pqate
is number of updates made to vertex property data, c,y,ise is the cost of one write operation. As
for Gunrock, the overhead is

CGunrock = Nupdate * Catomic + Cfilters (2)

where cfijzer is the cost of filtering redundant items with parallel scan. [v,pqazeal is less or equal
to nypdate as multiple updates may perform on the same vertices. For a skewed real-world graph,
[Vupdatedl is generally much less than n,,q4e- Besides, ¢,y rize is much less than czomic on a GPU
(4 cycles versus 36-76 cycles measured on Volta GPUs [25]). In this way, bitmap-directed frontieris
expected to be more efficient than the traditional “compute and filter” execution style. We provide
detailed evaluation in Section 6.3.

4.2.2  Warp-centric Load Balancing. Grus leverages a push-style warp-centric (WC) execution
method. Push-style execution is well-used in both CPU- and GPU-based graph processing systems
[4, 39, 54], and it can represent most of the graph processing workloads. Warp-centric execution
means that Grus assigns one thread warp to process all edges of each vertex. A thread warp con-
tinually tries to load and process 32 (the warp size of NVIDIA GPU) remaining edges of one vertex
until all edges of that vertex are processed. The benefits of warp-centric execution are two-fold.
1). Memory accesses more likely coalesce on account of continually processing 32 edges of each
vertex. NVIDIA GPU has 128 Bytes L1 cache line. Ideally, one memory transaction can satisfy
the data requirement of 32 edges (128B in total for 4B data format). Therefore, less memory read
transactions will be requested. It could alleviate data thrashing between the main memory and
GPU memory when the GPU memory is over-subscribed. 2). The workload is balanced well intra-
warp. Threads in the same warp have basically the same amount of edges to process. It results in
less thread divergence and higher warp execution efficiency.

Warp-centric execution is first proposed as part of a technique named Virtual Warp-centric
(VWC) [23]. Compared to the original VWC, Grus does not virtualize warp size to remain light-
weight as the optimal virtual warp size is not known ahead. Using warp-centric execution does
have its limitations in theory. (1) Threads would be idle when processing low-degree (less than
warp size) vertices. (2) Intra-block load-imbalance exists as one warp in a block may process ex-
tremely high degree vertices while other warps in the same block finish their work early. Thread-
Warp-CTA (TWC) strategy [43] also includes Warp-centric execution. It utilizes thread, warp or
CTA (cooperative thread array, same as thread block) to process vertices with varied degrees,
reducing idle threads within warps and the intra-CTA imbalance. However, TWC has its own dis-
advantages. It needs block-scan operations, block synchronizations and global barrier to gather
edges to process cooperatively across the CTA, which involves additional overhead.

Grus currently chooses warp-centric execution as the default load-balancing policy, because
warp-centric execution is not only lightweight in terms of memory consumption and execution
logic but also shows good performance in practice (as shown in Section 6). Grus will be further
extended to support other load-balancing policies (TWC, etc.).
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4.3 Grus’ Body: The Programming Interface

Grus mainly targets iterative neighbor-based graph algorithms. During processing, vertices con-
tinually update their labels based on their neighbors’ labels until a certain convergence point is
reached. Several steps of computation are executed in one iteration.

As shown in Section 4.2.1, computing and then filtering the frontier is inefficient in terms of
massive usage of atomic operations. This procedure is semantically rooted in the widely-used
Advance-Update-Filter programming abstraction. To overcome this shortcoming while preserving
the expressiveness, Grus leverages a straightforward, yet efficient programming interface at the
higher level. For a given graph application, programmers only need to specify user-defined func-
tions (UDF) with the following interfaces.

e Prepare is to process labels of all vertices at the beginning of each iteration. It is necessary
for some algorithms like Data-Driven PageRank [64], for instance.

e Updateis to process edges of vertices in the frontier. It updates the property of source nodes,
destination nodes, or edges according to UDF.

o Generateis to add vertices to the new frontier. It determines which vertices to process based
on algorithm-specific criteria. For most of the algorithms, it enqueues the vertices whose
labels are updated currently.

Grus fully supports UDF on either source nodes, destination nodes or edges to update their
labels. Grus can express connectivity-based and data-driven graph analysis algorithms, such as
BFS, SSSP, CC, PageRank, and data-driven PageRank [64].

Figure 7 shows the implementation of Single-Source Shortest Path (SSSP) and Data-driven
Pagerank (PR) algorithm in Grus’ interface. As shown in Figure 7(a), Grus’ algorithm skeleton
defines the common routines of graph algorithms. It is implemented in a header file so that user
can include it in their algorithms. Kernel defines how to map workloads to GPU threads. It assigns
each active vertex in the current frontier to one warp as Grus leverages Warp-centric Load Bal-
ancing. The threads in the same warp process edges in parallel. main defines the main function.
It initiates and sets the adaptive UM policy for data structures. In each iteration, Grus invokes
Prepare, Kernel and the BDF updating function in sequence. The BDF updates its frontier based
on the active information in bitmap, and resets its bitmap at the end of iterations. Figures 7(b)
and 7(c) show how to define SSSP and PR in Grus’ interface, respectively. The data structure is
the algorithm-specific vertex labels (and necessary intermediate data). Update and Generate are
implemented as CUDA inline device functions that are used in kernel. Init is to initialize the
objective vertex label (distance for SSSP, for instance) and frontier when the processing starts.

5 EVALUATION METHODOLOGY

This section presents our evaluation results. We are particularly interested in four questions:

e How is the performance of Grus compared to other in-memory processing frameworks?

e How is the performance of Grus compared to out-of-GPU-memory processing frameworks?
e How do the above proposed techniques contribute to Grus’ overall performance?

e How is the performance of Grus with limited hardware resources?

Implementation. We implement Grus in around 2,000 lines of CUDA and C++ code. The latest
version of Grus supports batched multiple-algorithm processing tasks. Users can write single-
algorithm applications with just a few lines of code with our Prepare-Update-Generate interface.

Evaluation Platform. We conduct experiments on a Linux server with two 2.40 GHz Intel 20-
core, hyper-threaded Xeon 6148 CPUs (80 threads in total). The main memory is 256 GB. One
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- 9 return false;}
1| void Kernel (){ 10| void Main(){
2| for vtx in frontier{ // Assign each active vertex |q; Init(Q);
to one warp . 12| SetMemPolicy(); //Set adaptive UM policy for UM
3 for edge in vtx.edgeSet{ //Threads in the same prefetching and hints
warp process edges in parallel 13| while(!CheckConverge()){
4 Update(); // Update labels 14 Prepare();
5 Generate(); // Enqueue vertices based on 15 Kernel()~’
criteria 16 frontier.getNew(); //BDF gets the new frontier
6| 33} and reset the bitmap.
7| bool CheckConverge(){ 17 1}
8 if (frontier.size()==0) return true;
(a) Graph algorithm skeleton
- 6 updated = true;}
1| struct data{ int labell]; } 7 updated = false;?}
2| void Prepare(){} //not used in SSSP 8| void Generate(){
3| void Update(){ 9| if(updated) frontier.add(edge.dstV);}
4| if (label[edge.dstV] > label[edge.srcV]+ edge. 10| void Init(){
weight){ 11| std::fill(label.start(), label.end(), INF);
5 atomicMin(&label[edge.dstV],label[edge.srcV]+edge. | 1o label[src]=0;
weight); 13| frontier.add(src);}
(b) The pseudocode for SSSP
14| void Generate(){
1 struct data{ float rank[], deltal[], delta2[l; } 15| if ((delta_old + update > EPSILON) && (delta_old <
2| void Prepare(){ EPSILON))
3 for vtx in V{ 16 frontier.add(edge.dstV);}
4 res = deltalvtx]; 17| void Init(){
5 deltalvtx] = 0.0; 18 for vtx in V{
6 delta2[vtx] = res; 19 rank[vtx] = 1.0 - ALPHA;
7 rank[vtx] += res; 20 update = ((1.@ - ALPHA) % ALPHA) / vtx.
8 1 outDegree;
9| void Update(){ 21 for dstV in vtx.neighbor{
10 res = delta2[edge.srcVl; 22 atomicAdd(&delta[dstV], update);
11 update = res *ALPHA / edge.srcV.outDegree; 23 13
12 delta_old = atomicAdd(&deltaledge.dstV], update); |o4 frontier.add_all();}
13 updated = true;} —

(c) The pseudocode for Pagerank

Fig. 7. Implementation of SSSP and Pagerank in Grus’ interface.

NVIDIA RTX 2080Ti GPU with 11 GB GDDR6 memory is connected to this system through PCI-e
%16 interface. The NVIDIA RTX 2080Ti GPU has 68 multiprocessors (SMs), each with 64 CUDA
cores. The operating system is Ubuntu 16.04 with Linux kernel 4.15.0. We use the NVCC compiler
version 10.2.89 (g++ version 5.4.0) to compile.

Baseline Frameworks. Table 2 summarizes the evaluated frameworks. For in-memory baselines,
we evaluate Cusha, Gunrock, SEP-Graph and SIMD-X. Cusha [28] is a framework optimized for
memory coalescing. Gunrock [63] is a frontier-based framework using high-level primitives. Tigr
[54] is a vertex-centric framework utilizing a virtual transformation technique to optimize degree-
irregular graphs. SEP-Graph [60] is a hybrid framework automatically switching between synchro-
nous or asynchronous execution mode, Push or Pull communication mechanism, and data-driven
or topology-driven traversing scheme for optimized performance. SIMD-X [36] is a framework
that leverages atomic-free task management. We download the source code of these frameworks
from Github and compile them following their guidelines.

For out-of-GPU-memory baselines, Graphie [21], Garaph [37], and Subway [55] are the most
related works. Unfortunately, Graphie and Garaph are not publicly accessible, thus we cannot
directly evaluate them. We reference the published results in their papers instead. We limit the
GPU hardware resource to run Grus for a relatively fair comparison. More details are shown in
Section 6.2. Subway is a most recent work on out-of-GPU-memory graph processing. It generates
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Table 2. Baseline Comparison Table 3. Graph Datasets in Evaluation from
References [6, 66]
Name Venue Optimization highlight
Cusha HPDC’14  Coalescing memory accesses Dataset V] |E| Size (GB) Domain
Gunrock  PPoPP’16  High-level abstraction Livejournal 5M  69M 1.4 Social
Graphie PACT’17  Asynchronous streaming processing Orkut 3M 117M 2.0 Social
Garaph ATC’17  Collaborative CPU-GPU execution UK-2005  39M  936M 18 Web
Tigr ASPLOS’18 Degree-optimized load-balancing Twitter 41M  1.4B 27 Social
SEP-Graph  PPoPP’19  Adaptive optimization switching Friendster 65M  1.8B 35 Social
SIMD-X ATC’19 Atomic-free, kernel fusion SK-2005 50M  1.9B 38 Web
Subway  EuroSys’20 Asynchronous subgraph generation UK-union 133M  5.5B 110 Web

The sizes are graphs in weighted edgelist format.

the subgraph containing active vertices at runtime. We get its source code from Github and select
several large datasets for comparison.

Workload. We select four widely used graph algorithms and evaluate their performance: (1) BFS,
(2) SSSP, (3) CC, and (4) PR [64].

For BFS and SSSP, we start with the first source node of each dataset for fair comparison. For
PageRank, we use the same terminal condition with 0.85 as damping factor and 0.01 as error tol-
erance. We run on each framework until convergent or iteration number reaches 100. For all the
frameworks, graph datasets are transformed into their required data format in advance. For Cusha,
we experiment with its two new processing methods (G-Shards and Concatenated Windows) and
report the best results for comparison.

When comparing with in-memory frameworks, we measure the elapsed times of execution on
GPU until convergence (excluding data-transfer, preprocessing) to better show the execution per-
formance on GPU. Note that Grus prefetches all data in UM to GPU if the graph can fit into GPU
memory due to the adaptive UM policy, and prefetching UM to GPU yields the same bandwidth
as explicit memory copy for large memory regions on the tested platform, therefore Grus will
not suffer the overhead of UM for in-memory evaluations compared with using normal pinned
cudaMemcpy or cudaMemcpyAsync. When comparing with out-of-GPU-memory frameworks, we
measure the elapsed times including data-transfer. We repeat the experiment five times and report
the average value of the obtained results.

Graph Dataset. We conduct experiments on a variety of widely used graph datasets listed in
Table 3. LiveJournal (LJ) [66], Orkut (OK) [66], Twitter (TW) [6], and Friendster (FD) [66] are
social networks. UK-2005 [6], SK-2005 (SK) [6], and UK-union [6] are web graph snapshots. We
generate the edge weight ranging from 1 to 64 uniformly. Their sizes varies from 1.4 to 110 GB.

6 EVALUATION RESULTS

This section presents the evaluation results and analysis.

6.1 Comparison with In-memory Frameworks

In Table 4, we present detailed performance results for Grus and other representative GPU-based
frameworks. We analyze the results from the following two perspectives:

Large Graph Processing Capability. As the graph data size grows, Cusha, Gunrock, Tigr, SIMD-
X, and SEP-Graph face increasing difficulty in graph processing due to GPU memory allocation
failure or other runtime errors. As shown in Table 4, Cusha cannot process a graph larger than the
Orkut dataset, since its G-Shard and Concatenated Window data structure takes over two times
space compared to the CSR format. In addition, Gunrock cannot process BFS, SSSP, and CC on
graphs larger than Orkut; it cannot process PageRank on graphs larger than UK-2005. Further,
Tigr cannot process graphs larger than Friendster for BFS, CC, and PR, or UK-2005 for SSSP due to
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Table 4. Detailed Performance

Elapsed time (ms)

Alg. | Frameworks| LJ Orkut UK-2005 Twitter SK-2005 Friendster UK-union|Avg. Speedup
Cusha 25 49 - - - - - 4.4
Gunrock | 24 50 - - - - - 44
BFS Tigr 9 7 448 247 274 1,248 - 2.2
SEP-Graph | 10 7 96 - - - - 1.0
SIMD-X 14 15 - - - - - 1.8
Grus 9 7 103 333 77 667 1,387 X
Cusha 50 51 - - - - - 1.8
Gunrock | 96 164 - - - - - 4.4
SSSP Tigr 37 25 738 - - - - 1.3
SEP-Graph | 63 50 - - - - - 2.0
SIMD-X 48 95 - - - - - 24
Grus 32 25 382 1,160 3,822 1,816 15,147 X
Gunrock | 21 59 - - - - - 1.5
CC Tigr 18 22 565 561 369 1,248 1.0
Grus 21 26 445 497 325 1,205 7,925 X
Cusha 625 449 - - - - - 4.3
Gunrock |[425 1,400 1,111 - - - - 3.7
PR Tigr 769 475 5,108 40,912 20,142 54,708 - 6.4
SEP-Graph | 243 124 - - - - - 14
SIMD-X |631 552 - - - - - 4.8
Grus 219 69 895 12,016 1,061 6,136 8,757 X

The results are in milliseconds (the less the better). The best results of each algorithm on one graph are in bold. “-”
indicates out of memory error on GPU or other runtime errors. The average speedup is the geometric mean of Grus’
speedup compared with that framework.

the memory issue of the edge weight data. Since SEP-Graph uses both CSR and CSC format to store
the graph for switching execution directions at runtime, it doubles the GPU memory requirement
in exchange for performance. SIMD-X reserves large space for frontier and loads graph weight
into GPU memory for all algorithms in their implementation, thus cannot process graph larger
than Orkut. In contrast, Grus can properly process all tested graphs whose edgelist sizes reach
110 GB.

Overall Performance. In general, Grus achieves the best performance on the majority of evaluated
datasets and algorithms. For BFS, Grus achieves the best performance on most of the graphs except
for UK-2005 and Twitter. On L] and Orkut, Tigr, SEP-Graph, and Grus achieve similar performance.
On UK-2005, the elapsed time of SEP-Graph is slightly smaller. This is because SEP-Graph is heavily
optimized for Push-Pull dual-direction BES execution on the cost of twice of memory consump-
tion. For SSSP, Grus achieves the best performance on all graphs except for Orkut. It shows the
same elapsed times on Orkut with Tigr. The reason behind this is that Tigr leverages a technique
named Edge-array Coalescing. This technique interleaves edge destination node and edge weight
data in the memory to coalesce memory access but introduces significant pre-processing over-
head. Therefore, it is undesirable considering the overall time consumption. For CC, Tigr achieves
slightly better performance for L] and Orkut. As for PageRank, Grus outperforms all the baselines
on all graphs. Even though SIMD-X utilizes block-level synchronization and inter-thread commu-
nication to avoid atomic operations, Grus still outperforms SIMD-X in all experiments.
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Table 5. GPU Specification Used for Graphie, Garaph, and Grus

Name Graphie Garaph Grus
GPU NVIDIA Titan Z NVIDIA GTX1070 NVIDIA RTX2080Ti
GPU Memory 6 GB GDDR5 6 GB GDDR5 11 GB GDDR6
CUDA cores 2,880 1,920 4,352
Bus Interface PClIe 3.0 X16 PClIe 3.0 xX16 PCle 3.0 xX16

In summary, Grus achieves 1.8X to 4.4x average speedup over Cusha, 1.5X to 4.4X average
speedup over Gunrock, up to 6.4x average speedup over Tigr, 2.0X average speedup over SEP-
Graph and 1.8X to 4.8X average speedup over SIMD-X on evaluated algorithms. Note that ex-
periments in this section are comparing Grus with in-memory frameworks in terms of on-GPU
execution time, excluding data-transfer time between the main memory and GPU memory. The
graph data is already in the GPU memory when GPU kernels start to execute. Considering that
execution on UM resident on GPU and normal allocated GPU memory is identical, we can con-
clude that the speedups of Grus are mainly contributed by the Right Wing of Grus (i.e., execution
optimizations) for in-memory experiments.

6.2 Comparison with Out-of-GPU-memory Frameworks

Comparison with Graphie and Garaph. As stated before, Graphie and Garaph are not publicly
accessible, and we do not have the same GPU used in their paper. We choose to limit the hardware
resources of our GPU for comparison as fair as possible. The specifications of GPUs used in the
Graphie and Garaph paper are listed in Table 5. The GPU we use have more memory and cores
than GPUs used for Graphie and Garaph. Specifically, as the GPUs used in Graphie and Garaph
both have 6 GB memory, we limit Grus to use 6 GB GPU memory by allocating 5 GB dummy data
on our GPU in advance. As their used GPUs has less CUDA cores, we limit Grus to use 30 SMs
(1,920 cores) out of 68 SMs by involving dummy kernel to fully occupy the rest 38 SMs, trying to
simulate a GTX1070 GPU. We also add a configuration using only 8 SMs to simulate a low-end
GPU.

In Table 6, we list the reported results of the commonly evaluated graphs and algorithms in
their paper. Note that Graphie reports the time of CC until convergence while Garaph reports
10-iteration time for twitter and 5-iteration time for UK-union. For Twitter, all results take into
account both CPU-GPU memory transfer and execution on GPU. For UK-union, the runtime starts
from reading graphs from the storage. We follow their evaluation methodologies in their papers.
Note that Garaph also fully leverages a 20-thread CPU for collaborative execution in their paper
while Grus processes graph only on GPU.

As Table 6 shows, Grus shows significant speedup over Graphie and Garaph even with only
8 SMs. When using 30 SMs, Grus achieves up to 5.0x speedup over Graphie and 4.4X speedup
over Garaph for Twitter. As for UK-union, Grus achieves 19X speedup over Garaph. With only
8 SMs, Grus achieves 3.3x speedup over Graphie, 2.8X speedup over Garaph for Twitter and 19%
speedup over Garaph for UK-union. Grus’ significantly high speedup over Garaph for UK-union is
because Garaph needs to process UK-union while reading graph shards from the SSD as the 64 GB
main memory on their platform cannot hold all the necessary data. In contrast, Grus can load the
whole graph in the main memory and process with peak memory usage less than 45 GB owing
to space-efficiency. Thus, Grus could yield even higher speedup if we compare the CC runtime
till convergence for UK-union. Since Grus can achieve higher performance with even less GPU
resources, we conclude that Grus is more efficient than Graphie and Garaph.
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Table 6. Runtime on the Commonly Evaluated Datasets (Including Data Transfer Time
from the Main Memory to the GPU)

Time (s) Speedup
Dataset Alg. Graphie Garaph Grus (30 SMs) Grus (8 SMs) 30 SMs | 8 SMs
BFS 5.42 - 1.16 1.77 7.9 | 31,0
Twitter SSSP 1467  12.75 2.93 4.50 (5.0, 4.4) | (3.3, 2.8)
cC 421 - 1.51 2.96 (2.8,-) | (14,-)
CC(10itr.) - 3.32 1.50 2.97 (-22) | (- 11)
UK-union | CC(5itr.) - 157 8.3 10.7 (-,19) | (- 15)

Grus is limited to use 6 GB GPU memory and 30 SMs (1920 cores) to simulate their configurations, and 8 SMs to simulate

alower-end GPU. The speedup is the achieved speedup of Grus over Graphie and Garaph respectively. Sign “-” indicates
not evaluated.
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Comparison with Subway. We also compare Grus with Subway, the most recent design that is
closely related to our work. As Subway is not optimized for PageRank, we mainly evaluate the per-
formance of BFS, CC and SSSP on Subway. We find that Subway fails to process UK-union correctly
due to overflow. Alternatively, we use UK-2007, a graph with 110 million vertices and 3.9 billion
edges instead. We list the results on Twitter, SK-2005, Friendster, and UK-2007. As Figure 8 shows,
Grus achieves up to 2.6X speedup on Twitter and SSSP on SK-2005. Grus has similar if not better
performance on other datasets expect for CC on Friendster. Grus yields an average speedup of 1.5X
on the evaluated datasets.

6.3 Performance Breakdown

Unified Memory Performance. To understand the impact of Grus UM optimization, we evaluate
Grus with and without its adaptive memory management. Figure 9 shows the normalized speedup
of Grus’ adaptive memory management. Note that these results are based on the total time in-
cluding UM prefetching overhead. In other words, it shows the overall speedup during the whole
procedure. In summary, the adaptive memory management provides 1.1X to 6.6X overall speedup.
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Fig. 11. Normalized speedup of prefetching ratio (r) from 0 to 1 over no prefetching (r = 0). We group the
test cases into two groups based on their algorithm type.

Among the four algorithms, SSSP gets the most performance gain from the adaptive memory
management while PageRank gets the least. This is reasonable because SSSP is more memory-
hungry while PageRank is more computing-intensive. Processing UK-union shows most perfor-
mance gain, since UK-union is the largest graph in our experiment and the GPU memory is heavily
over-subscribed.

To show the effectiveness of our algorithm-based prefetching ratio (r) selection, we perform
a sensitive analysis for it. We evaluate the performance of UM-over-subscribed test cases with
different rs. As Figure 11 shows, prefetching provides speedup in most of test cases except for BFS
on UK-union over no prefetching (z = 0). The average speedup of both kinds of algorithms grows
from 1 to nearly 1.5 with fluctuations. For traversal algorithms, prefetching with 7 = 0.5 achieves
the highest average speedup (1.43x). For full-active algorithms, prefetching with 7 = 0.8 achieves
the highest average speedup (1.48x). This validates that our algorithm-based heuristic 7 selection
is efficient in these cases. We leave more sophisticated solutions to further research.

Atomic Operation Reduction. To evaluate the effectiveness of our proposed Prepare-Update-
Generate interface, we measure the total requested global atomic operations during processing.
We collect the 11tex__t_set_accesses_pipe_lsu_mem_global_op_atom.summetric of NVIDIA
Nsight Compute CLI [47] as the result. As Figure 10 shows, Grus takes significantly less atomic
operations than Gunrock. Specifically, Grus saves 80% to 82%, 95%, and 88% atomic operations for
LJ, Orkut, and UK-2005 compared to the Gunrock style execution, respectively. The results of BFS
and SSSP on the same graph are similar, since the patterns of both algorithms are highly related
to the graph structure. The average degree of vertices in Orkut is higher than the average degree

of LiveJournal and UK-2005, and therfore processing Orkut benefits more from BDF.

Hardware Resource Utilization. To evaluate the execution efficiency of different frameworks, we
characterize the hardware resource utilization using NVIDIA Nsight Compute. We collect the
achieved percentage of utilization for SM, memory, L1/Tex cache and L2 cache with respect to
the theoretical maximum for the most time-consuming iteration (expect for SIMD-X, since it uses
one single kernel for all iterations) of BFS on Orkut.

As Table 7 shows, these frameworks have significant different results as their designs have dif-
ferent priorities. Gunrock has surprisingly low SM, L1/Tex and L2 utilization using its two load-
balancing strategies. Tigr has the highest SM utilization, since it invokes threads on each vertice
at all iterations no matter whether they are active or not. Cusha has the highest memory utiliza-
tion due to its edge-centric graph format, which basically doubles the memory traffic compared
with other vertex-centric frameworks. Sep-graph has the highest L1/Tex cache utilization, since
it switches to pull-style execution, which has good locality in this iteration with the cost of du-
plicate graph structure data (using both CSR and CSC). Among these, Grus achieves the highest
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Table 7. Achieved Percentage Utilization of GPU for BFS on Orkut

Achieved percentage utilization

F k
rameworks SM Memory L1/Tex L2
Gunrock-LB 3.0 26.3 8.5 7.0
Gunrock-TWC 2.0 23.9 7.2 6.0
SIMD-X 11.9 11.9 23.4 5.8
Tigr 25.9 31.7 21.9 23.6
Cusha 8.0 54.2 16.0 21.0
Sep-graph 13.0 28.1 56.3 24.6
Grus 8.1 28.7 28.4 28.7
2 B (9) | @ —BFS(6) | £16 —+—BFS(997)
Fg () | E 1 —CC(49) E s —+—CC(990)
g sssP(ao) § 8 SssP(126)| & SSSP (1000)|
&, ——PR(34) | = —PR(87) | @ 4 ——PR(88)
3 ) 3 3
= o 2 4 6 8 1;) 12 = [ 2 4 6 8 10 12 = o 2 4 6 8 10 12
Available Memory (GBs) Available Memory (GBs) Available Memory (GBs)
(a) Friendster (b) SK-2005 (c) UK-union

Fig. 12. Normalized elapsed times for four algorithms of Grus with variant available memory capacities (the
smaller the better), compared with using all 11 GB GPU. Numbers in bracket are the iteration number.

L2, second-highest L1/Tex and moderately high memory utilization. This shows that even though
Grus prioritizes space efficiency in the design, its execution strategy (the Right Wing) still allows
to outstandingly utilize hardware resources without sacrificing parallelism nor data locality.

6.4 Hardware Sensitive Analysis

With the evolving technology like GPU virtualization and GPU multi-tasking, sharing GPUs be-
comes more common in multi-tenant datacenters and HPC clusters. We are interested in how is
the performance of Grus with limited hardware resources to simulate GPU-sharing environment.
Due to space limitation, our extensive evaluation focuses on performance with varying memory
capacities and computing resources. These results provide insights as Multi-Instance GPU (MIG)
technology of the recent NVIDIA Ampere architecture GPU provides isolation of SMs, L2 cache
banks and DRAM between GPU instances [48]. We leave the interference of co-allocated work-
loads in UM environment as further research topic.

Performance with Varied Memory Capacity. We investigate how does available GPU memory
capacity affect the performance of processing large graphs with over-subscription. We limit the
available memory capacity from less than 1 to 11 GB by launching a dummy kernel to occupy
the rest of GPU memory in advance. BFS, PageRank and CC process graph topology data while
SSSP needs additional graph edge weight data. The topology data size of Friendster, SK-2005 and
UK-union is around 8, 9, and 15 GB, respectively.

As Figure 12 shows, the results have some patterns. For BFS, PageRank and CC on Friendster and
SK-2005, the results are barely influenced by the change of available memory capacity as long as the
GPU memory is not over-subscribed. When GPU memory is over-subscribed, elapsed time grows
as the available memory size becomes smaller. This is straightforward to understand that less
amount of data can resident on GPU with less available memory, and thus more page faults occur.
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Fig. 13. Normalized elapsed times for four algorithms of Grus with variant computing units (SMs), compared
with using all 68 SMs of a RTX 2080Ti GPU.

The changes of PageRank on Friendster and all algorithms on UK-union are very gentle when the
available memory is larger than 2 GB. SK-2005 seems to be more sensitive to memory capacity
changes. When available memory capacity is lower than a certain number (depending on graphs
and algorithms), the runtime grows explosively. This is because memory capacity is so small that
memory storing ever-changing objective vertex label data and frontier over-subscribes available
GPU memory already. It is worth noting that the processing requires around 2 GB memory for
Friendster, 8 GB memory for SK-2005, and less than 2 GB memory for UK-union with twice the
runtime compared to using all the GPU memory.

Performance with Varied Computing Resources. We investigate how is the performance of Grus
processing large graphs with limited GPU computing resources. We limit the number of the avail-
able SMs from 4 to 68 by launching a dummy kernel to occupy the rest of SMs. As Figure 13 shows,
the runtimes are very insensitive to the number of SMs. It only requires 16 SMs to achieve half the
performance using all 68 SMs (8 SMs is enough for most of the cases).

Insight. As the above results show, the runtimes of Grus processing graphs with over-subscribed
UM is affected by the available memory capacity and computing resources. However, severely lim-
iting memory capacity and computing resources results in a relatively little slowdown (depending
on dataset and algorithm). The performance bottleneck of Grus is not CUDA cores or GPU mem-
ory capacity but CPU-GPU interface bandwidth or page handling overhead. The above results also
indicate that there is an opportunity to balance the processing runtime with GPU memory budget
and computing resources in the GPU-sharing environment. We leave this for further research.

7 RELATED WORK

GPU Graph Processing Frameworks. Merrill et al. used prefix sum to construct fine-grained
tasks and leveraged vertex/edge frontier to store vertices (or edges) to be processed [43]. Hong et al.
[23] proposed the virtual-warp-centric programming method to process graph by assigning jobs
to threads in a warp for better load-balancing. Totem [18] system is a GPU-CPU hybrid platform
for graph processing. It uses CPU to handle high-degree nodes for fast sequential processing and
allocate numerous low-degree nodes on GPU for massive parallelism processing. MapGraph [16]
combines three different scheduling strategies together and dynamically chooses the most suitable
one for each vertex based on its degree. Cusha [28] uses two novel data structures, named G-
Shards and CW, to avoid non-coalesced memory access. Gunrock [63] performs operations on the
frontier with data-centric abstraction. Tigr [54] proposes a virtual transformation to transform
skewed graphs into virtual vertices for load-balancing. EtaGraph [62] proposes a lightweight virtual
graph transformation for load-balance. This work leverages UM to overlap the computing and
data-transferring. AsynGraph [68] processes important vertices more times within each round so
that the vertex states are propagated more efficiently among the graph.
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Hetero-mark [59] and Chai [20] are benchmark suites for CPU-GPU applications including
several graph algorithms. They present preliminary results on UM (or shared virtual memory
in OpenCL [29]). Mailthody et al. [38] proposed a CPU-GPU collaborative algorithm for Trian-
gle Counting and Truss Decomposition with UM. Pearson et al. [50] utilized UM to simultane-
ous reading graph data from disk and construct graph in GPU memory with a double-buffering
technique.

There are works on processing graph with spare linear algebra representation [5, 8, 65, 67].
SMASH [26] is a hardware-software solution for sparse matrix operations. It leverages a hierarchy
of bitmaps to encode spare matrices along with hardware support.

Large Graph Processing on GPU. To enable large graph processing capability on GPU, multi-
GPU-based schemes [4, 22, 41, 69] and distributed processing methods [24, 31] are proposed. How-
ever, these methods have certain limitations. Some of them distribute graph duplicates on GPUs
to accelerate processing [41], still being limited by the memory capacity of a single GPU. The rest
of them leverage the aggregated memory of multiple GPUs to process large graphs by distributing
partitions among GPUs. To process larger graphs, these methods require more GPUs for larger
aggregate GPU memory to hold the graph data. To hide communication overhead and maintain
scalability, distributed processing relies on high-speed inter-GPU (e.g., NVLINK) and inter-node
interconnect for better performance. Thus, these methods are only feasible in datacenters or on su-
percomputers and have huge cost in terms of capital expenditure and power consumption, which
is not accessible for many enterprises and researchers. Grus makes efforts to effectively leverage
the GPU of off-the-shelf severs and PCs to process large-scale graph.

There are also efforts [21, 31, 37] on leveraging the out-of-core processing method to process
large-scale graphs on GPU. Similar to CPU-based frameworks like GraphChi [32] and X-Stream
[53], these frameworks generally partition graphs into chunks to fit into GPU memory for pro-
cessing. To hide the data-transfer overhead between CPU and GPU, they use asynchronous GPU
streams to overlap data movement and kernel execution. One major drawback of this approach is
that the statically partitioned graph chunks are less flexible to process. Chunks need to be fully
transferred to the GPU memory no matter how much data is actually used. Recently, Subway [55]
chooses to generate subgraphs based on the vertex active information at runtime and processes
them asynchronously. Scaph [70] utilizes two graph processing engines for high-value subgraphs
and low-value subgraphs at each iteration, respectively.

Oversubscribing GPU Memory. vDNN [52] is a runtime memory manager to handle memory
allocation, movement between CPU and GPU memory for DNN workload. Song et al. [57] studied
on characterizing the performance of GPU acceleration system for CNN applications. They pro-
posed a tuned GPU acceleration framework to handle the gap caused by the uneven computing
loads at different CNN layers and fixed computing capacity provisioning. Wang et al. [61] proposed
a Fine-tune Structured Sparsity Learning method to take advantage of the CSR format to encode the
large sparse matrix for sparse neural networks. Buddy Compression [10] splits memory-entries to
high-bandwidth GPU memory or a slower-but-larger buddy memory for HPC and DL workloads.

Optimizations for UM. MASK [3] presents several address-translation-aware cache and mem-
ory management mechanisms to reduce the overhead of address translation. Mosaic [2] presents
a mechanism to support multiple page sizes for GPU virtual memory. Ganguly et al. [17] pro-
posed two locality aware pre-eviction policies to help with hardware prefetcher for UM over-
subscription. Li et al. [35] leveraged compiler techniques to achieve adaptive implicit and explicit
data transfer and prevent data thrashing. ETC [34] is a memory management framework to mit-
igate the oversubscription overhead using proactive eviction. Kim et al. [30] proposed a runtime
and hardware solution to improve the efficiency of UM for irregular applications. This work lever-
ages a Virtual Thread technique to oversubscribe GPU threads and improve the batch size of UM
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page fault handling, and thus to amortize the fault handling overhead. Besides this, they proposed
a unobtrusive eviction technique to reduce the page migration latency.

Optimizing Atomics on GPU Elteir et al. [14] characterized the performance of atomic op-
erations on AMD GPUs and proposed a software-based atomic operation. Gémez-Luna et al. [19]
studied atomic additions on shared memory through a microbenchmark-based analysis. Nasre et al.
[44] proposed two high-level methods, namely, leveraging barrier-based processing and exploit-
ing algebraic properties, to eliminate atomics in irregular programs. Franey et al. [15] presented
a mechanism for implementing low-cost coherence and speculative acquisition of atomic data on
the GPU. Adinets [1] introduced a technique to aggregate atomic operations inside each warp so
that the total number of atomics is reduced. Egielski et al. [13] proposed two principles for efficient
reduction of atomic collisions and a set of reduced-collision atomic algorithms.

8 CONCLUSION

Graph application has drawn great attention in recent years. Graph processing on GPU-accelerated
machines demands better performance, efficiency, and scalability. In this work, we develop Grus,
a graph processing system on Unified Virtual Memory enabled GPUs. Grus is systematically op-
timized in memory management and kernel execution for processing large graphs on GPUs. It
leverages both trimmed memory access and lightweight frontier structure to reduce the overhead
rooted in prior counterparts. Extensive evaluation on Grus demonstrate the effectiveness of our
design in both in-memory and out-of-memory graph processing scenarios.
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